bedrock.lang.cpp.logic.path_pred
(*
* Copyright (c) 2020-2024 BlueRock Security, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import bedrock.prelude.base.
Require Import bedrock.lang.proofmode.proofmode.
Require Import bedrock.lang.cpp.semantics.
Require Import bedrock.lang.cpp.logic.pred.
Require Import bedrock.lang.cpp.syntax.
#[deprecated(since="20231103",note="use [ptr].")]
Notation Loc := ptr (only parsing).
Section with_Σ.
Context `{has_cpp : cpp_logic}.
* Copyright (c) 2020-2024 BlueRock Security, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import bedrock.prelude.base.
Require Import bedrock.lang.proofmode.proofmode.
Require Import bedrock.lang.cpp.semantics.
Require Import bedrock.lang.cpp.logic.pred.
Require Import bedrock.lang.cpp.syntax.
#[deprecated(since="20231103",note="use [ptr].")]
Notation Loc := ptr (only parsing).
Section with_Σ.
Context `{has_cpp : cpp_logic}.
absolute locations _eqv v represents the pointer of a val. The resulting pointer
is invalid if v is not a ptr.
NOTE this does *not* do things like converting integers to pointers.
Definition _eqv (a : val) : ptr :=
match a with
| Vptr p => p
| _ => invalid_ptr
end.
Lemma _eqv_eq : forall p, _eqv (Vptr p) = p.
Proof. reflexivity. Qed.
Definition _global_def (resolve : genv) (x : obj_name) : ptr :=
global_ptr resolve.(genv_tu) x.
Definition _global_aux : seal (@_global_def). Proof. by eexists. Qed.
Definition _global := _global_aux.(unseal).
Definition _global_eq : @_global = _ := _global_aux.(seal_eq).
#[global] Instance _global_inj {resolve : genv} : Inj (=) (=) (_global resolve).
Proof. rewrite _global_eq. apply _. Qed.
Lemma _global_nonnull resolve n : _global resolve n <> nullptr.
Proof. rewrite _global_eq /_global_def. apply global_ptr_nonnull. Qed.
End with_Σ.
Arguments _global {resolve} _ : rename.
(* this is for `Indirect` field references *)
Fixpoint path_to_Offset {σ:genv} (from : globname) (final : field_name.t lang.cpp)
(ls : list (field_name.t lang.cpp * globname))
: offset :=
match ls with
| [] => o_field σ (Field from final)
| (i, c) :: ls =>
o_field σ (Field from i) ,, path_to_Offset c final ls
end.
match a with
| Vptr p => p
| _ => invalid_ptr
end.
Lemma _eqv_eq : forall p, _eqv (Vptr p) = p.
Proof. reflexivity. Qed.
Definition _global_def (resolve : genv) (x : obj_name) : ptr :=
global_ptr resolve.(genv_tu) x.
Definition _global_aux : seal (@_global_def). Proof. by eexists. Qed.
Definition _global := _global_aux.(unseal).
Definition _global_eq : @_global = _ := _global_aux.(seal_eq).
#[global] Instance _global_inj {resolve : genv} : Inj (=) (=) (_global resolve).
Proof. rewrite _global_eq. apply _. Qed.
Lemma _global_nonnull resolve n : _global resolve n <> nullptr.
Proof. rewrite _global_eq /_global_def. apply global_ptr_nonnull. Qed.
End with_Σ.
Arguments _global {resolve} _ : rename.
(* this is for `Indirect` field references *)
Fixpoint path_to_Offset {σ:genv} (from : globname) (final : field_name.t lang.cpp)
(ls : list (field_name.t lang.cpp * globname))
: offset :=
match ls with
| [] => o_field σ (Field from final)
| (i, c) :: ls =>
o_field σ (Field from i) ,, path_to_Offset c final ls
end.