bedrock.lang.cpp.bi.cfractional
(*
* Copyright (c) 2022-2023 BlueRock Security, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export bedrock.lang.cpp.algebra.cfrac.
Require Import bedrock.lang.bi.prelude.
Require Import bedrock.lang.bi.observe.
Require Import bedrock.lang.bi.split_frac.
Require Import bedrock.lang.cpp.bi.split_cfrac.
Require Import bedrock.lang.proofmode.proofmode.
Import ChargeNotation.
#[local] Set Printing Coercions.
#[local] Set Primitive Projections.
* Copyright (c) 2022-2023 BlueRock Security, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export bedrock.lang.cpp.algebra.cfrac.
Require Import bedrock.lang.bi.prelude.
Require Import bedrock.lang.bi.observe.
Require Import bedrock.lang.bi.split_frac.
Require Import bedrock.lang.cpp.bi.split_cfrac.
Require Import bedrock.lang.proofmode.proofmode.
Import ChargeNotation.
#[local] Set Printing Coercions.
#[local] Set Primitive Projections.
Fractional predicates at type cQp.t
- CFractional, AsCFractional enable one to declare predicates that
- Tactic solve_as_cfrac for solving AsCFractional
- CFractionalN, AsCFractionalN, AgreeCF1 notation to save typing
- CFracValidN classes enabling observations about validity
- Tactic solve_cfrac_valid for solving CFracValidN
- IntoSep, FromSep instances teaching the IPM to split and combine
Class CFractional {PROP : bi} (P : cQp.t -> PROP) : Prop :=
cfractional q1 q2 : P (q1 + q2)%cQp -|- P q1 ** P q2.
#[global] Hint Mode CFractional + ! : typeclass_instances.
#[global] Arguments CFractional {_} _%_I : simpl never, assert.
cfractional q1 q2 : P (q1 + q2)%cQp -|- P q1 ** P q2.
#[global] Hint Mode CFractional + ! : typeclass_instances.
#[global] Arguments CFractional {_} _%_I : simpl never, assert.
CFractionalN states that predicate P taking a const/mutable
fraction and then N arguments is CFractional
Notation CFractional0 := CFractional (only parsing).
Notation CFractional1 P := (∀ a, CFractional (fun q => P q a)) (only parsing).
Notation CFractional2 P := (∀ a b, CFractional (fun q => P q a b)) (only parsing).
Notation CFractional3 P := (∀ a b c, CFractional (fun q => P q a b c)) (only parsing).
Notation CFractional4 P := (∀ a b c d, CFractional (fun q => P q a b c d)) (only parsing).
Notation CFractional5 P := (∀ a b c d e, CFractional (fun q => P q a b c d e)) (only parsing).
Notation CFractional1 P := (∀ a, CFractional (fun q => P q a)) (only parsing).
Notation CFractional2 P := (∀ a b, CFractional (fun q => P q a b)) (only parsing).
Notation CFractional3 P := (∀ a b c, CFractional (fun q => P q a b c)) (only parsing).
Notation CFractional4 P := (∀ a b c d, CFractional (fun q => P q a b c d)) (only parsing).
Notation CFractional5 P := (∀ a b c d e, CFractional (fun q => P q a b c d e)) (only parsing).
CFractional wrapper suited to avoiding HO unification.
Class AsCFractional {PROP : bi} (P : PROP) (Q : cQp.t -> PROP) (q : cQp.t) : Prop := {
as_cfractional : P -|- Q q;
#[global] as_cfractional_cfractional :: CFractional Q;
}.
#[global] Hint Mode AsCFractional + ! - - : typeclass_instances.
#[global] Hint Mode AsCFractional + - + - : typeclass_instances.
#[global] Arguments AsCFractional {_} (_ _)%_I _%_Qp : assert.
Ltac solve_as_cfrac := solve [intros; exact: Build_AsCFractional].
as_cfractional : P -|- Q q;
#[global] as_cfractional_cfractional :: CFractional Q;
}.
#[global] Hint Mode AsCFractional + ! - - : typeclass_instances.
#[global] Hint Mode AsCFractional + - + - : typeclass_instances.
#[global] Arguments AsCFractional {_} (_ _)%_I _%_Qp : assert.
Ltac solve_as_cfrac := solve [intros; exact: Build_AsCFractional].
Notation AsCFractional0 P := (∀ q, AsCFractional (P q) P q) (only parsing).
Notation AsCFractional1 P := (∀ q a, AsCFractional (P q a) (fun q => P%I q a) q) (only parsing).
Notation AsCFractional2 P := (∀ q a b, AsCFractional (P q a b) (fun q => P%I q a b) q) (only parsing).
Notation AsCFractional3 P := (∀ q a b c, AsCFractional (P q a b c) (fun q => P%I q a b c) q) (only parsing).
Notation AsCFractional4 P := (∀ q a b c d, AsCFractional (P q a b c d) (fun q => P%I q a b c d) q) (only parsing).
Notation AsCFractional5 P := (∀ q a b c d e, AsCFractional (P q a b c d e) (fun q => P%I q a b c d e) q) (only parsing).
Notation AsCFractional1 P := (∀ q a, AsCFractional (P q a) (fun q => P%I q a) q) (only parsing).
Notation AsCFractional2 P := (∀ q a b, AsCFractional (P q a b) (fun q => P%I q a b) q) (only parsing).
Notation AsCFractional3 P := (∀ q a b c, AsCFractional (P q a b c) (fun q => P%I q a b c) q) (only parsing).
Notation AsCFractional4 P := (∀ q a b c d, AsCFractional (P q a b c d) (fun q => P%I q a b c d) q) (only parsing).
Notation AsCFractional5 P := (∀ q a b c d e, AsCFractional (P q a b c d e) (fun q => P%I q a b c d e) q) (only parsing).
Notation AgreeCF1 P := (∀ (q1 q2 : cQp.t) a1 a2, Observe2 [| a1 = a2 |] (P q1 a1) (P q2 a2)) (only parsing).
CFracValidN P encapsulates the observation cQp.frac q ≤ 1 from P
applied to const/mutable fraction q and then N arguments. The
CFracValidN enable easier to use observations about validity.
Class CFracValid0 {PROP : bi} (P : cQp.t -> PROP) : Prop :=
{ cfrac_valid_0 q : Observe [| cQp.frac q ≤ 1 |]%Qp (P q) }.
#[global] Hint Mode CFracValid0 - + : typeclass_instances.
#[global] Arguments CFracValid0 {_} _%_I : assert.
Class CFracValid1 {A} {PROP : bi} (P : cQp.t -> A -> PROP) : Prop :=
{ cfrac_valid_1 q a : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a) }.
#[global] Hint Mode CFracValid1 - - + : typeclass_instances.
#[global] Arguments CFracValid1 {_ _} _%_I : assert.
Class CFracValid2 {A B} {PROP : bi} (P : cQp.t -> A -> B -> PROP) : Prop :=
{ cfrac_valid_2 q a b : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a b) }.
#[global] Hint Mode CFracValid2 - - - + : typeclass_instances.
#[global] Arguments CFracValid2 {_ _ _} _%_I : assert.
Class CFracValid3 {A B C} {PROP : bi} (P : cQp.t -> A -> B -> C -> PROP) : Prop :=
{ cfrac_valid_3 q a b c : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a b c) }.
#[global] Hint Mode CFracValid3 - - - - + : typeclass_instances.
#[global] Arguments CFracValid3 {_ _ _ _} _%_I : assert.
Class CFracValid4 {A B C D} {PROP : bi} (P : cQp.t -> A -> B -> C -> D -> PROP) : Prop :=
{ cfrac_valid_4 q a b c d : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a b c d) }.
#[global] Hint Mode CFracValid4 - - - - - + : typeclass_instances.
#[global] Arguments CFracValid4 {_ _ _ _ _} _%_I : assert.
Class CFracValid5 {A B C D E} {PROP : bi} (P : cQp.t -> A -> B -> C -> D -> E -> PROP) : Prop :=
{ cfrac_valid_5 q a b c d e : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a b c d e) }.
#[global] Hint Mode CFracValid5 - - - - - - + : typeclass_instances.
#[global] Arguments CFracValid5 {_ _ _ _ _ _} _%_I : assert.
Ltac solve_cfrac_valid := solve [intros; constructor; apply _].
{ cfrac_valid_0 q : Observe [| cQp.frac q ≤ 1 |]%Qp (P q) }.
#[global] Hint Mode CFracValid0 - + : typeclass_instances.
#[global] Arguments CFracValid0 {_} _%_I : assert.
Class CFracValid1 {A} {PROP : bi} (P : cQp.t -> A -> PROP) : Prop :=
{ cfrac_valid_1 q a : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a) }.
#[global] Hint Mode CFracValid1 - - + : typeclass_instances.
#[global] Arguments CFracValid1 {_ _} _%_I : assert.
Class CFracValid2 {A B} {PROP : bi} (P : cQp.t -> A -> B -> PROP) : Prop :=
{ cfrac_valid_2 q a b : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a b) }.
#[global] Hint Mode CFracValid2 - - - + : typeclass_instances.
#[global] Arguments CFracValid2 {_ _ _} _%_I : assert.
Class CFracValid3 {A B C} {PROP : bi} (P : cQp.t -> A -> B -> C -> PROP) : Prop :=
{ cfrac_valid_3 q a b c : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a b c) }.
#[global] Hint Mode CFracValid3 - - - - + : typeclass_instances.
#[global] Arguments CFracValid3 {_ _ _ _} _%_I : assert.
Class CFracValid4 {A B C D} {PROP : bi} (P : cQp.t -> A -> B -> C -> D -> PROP) : Prop :=
{ cfrac_valid_4 q a b c d : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a b c d) }.
#[global] Hint Mode CFracValid4 - - - - - + : typeclass_instances.
#[global] Arguments CFracValid4 {_ _ _ _ _} _%_I : assert.
Class CFracValid5 {A B C D E} {PROP : bi} (P : cQp.t -> A -> B -> C -> D -> E -> PROP) : Prop :=
{ cfrac_valid_5 q a b c d e : Observe [| cQp.frac q ≤ 1 |]%Qp (P q a b c d e) }.
#[global] Hint Mode CFracValid5 - - - - - - + : typeclass_instances.
#[global] Arguments CFracValid5 {_ _ _ _ _ _} _%_I : assert.
Ltac solve_cfrac_valid := solve [intros; constructor; apply _].
Properties of CFractional
Section cfractional.
Context {PROP : bi}.
Implicit Types (P Q : PROP).
#[global] Instance: Params (@CFractional) 1 := {}.
#[global] Instance CFractional_proper :
Proper (pointwise_relation _ (equiv (A:=PROP)) ==> iff) CFractional.
Proof.
intros P1 P2 EQ. split=>Frac q1 q2.
by rewrite -EQ Frac. by rewrite EQ Frac.
Qed.
Context {PROP : bi}.
Implicit Types (P Q : PROP).
#[global] Instance: Params (@CFractional) 1 := {}.
#[global] Instance CFractional_proper :
Proper (pointwise_relation _ (equiv (A:=PROP)) ==> iff) CFractional.
Proof.
intros P1 P2 EQ. split=>Frac q1 q2.
by rewrite -EQ Frac. by rewrite EQ Frac.
Qed.
Lemma cfractional_dup P :
(P -|- P ** P) ->
CFractional (λ _, P).
Proof. by rewrite /CFractional. Qed.
#[global] Instance persistent_cfractional `{!Persistent P, !TCOr (Affine P) (Absorbing P)} :
CFractional (fun _ => P).
Proof. apply /cfractional_dup /bi.persistent_sep_dup. Qed.
#[global] Instance cfractional_sep (F G : cQp.t -> PROP) :
CFractional F -> CFractional G ->
CFractional (fun q => F q ** G q).
Proof.
rewrite /CFractional=>HF HG q1 q2. rewrite {}HF {}HG.
split'; iIntros "([$ $] & $ & $)".
Qed.
#[global] Instance cfractional_exist {A} (P : A -> cQp.t -> PROP) :
(∀ oa, CFractional (P oa)) ->
(∀ a1 a2 q1 q2, Observe2 [| a1 = a2 |] (P a1 q1) (P a2 q2)) ->
CFractional (fun q => Exists a : A, P a q).
Proof.
intros ?? q1 q2.
rewrite -bi.exist_sep; last by intros; exact: observe_2_elim_pure.
f_equiv=>oa. apply: cfractional.
Qed.
#[global] Instance cfractional_embed `{!BiEmbed PROP PROP'} F :
CFractional F -> CFractional (fun q => embed (F q) : PROP').
Proof. intros ???. by rewrite cfractional embed_sep. Qed.
#[global] Instance as_cfractional_embed `{!BiEmbed PROP PROP'} P F q :
AsCFractional P F q -> AsCFractional (embed P) (fun q => embed (F q)) q.
Proof. split; [by rewrite ->!as_cfractional | apply _]. Qed.
#[global] Instance cfractional_big_sepL {A} (l : list A) F :
(∀ k x, CFractional (F k x)) ->
CFractional (PROP:=PROP) (funI q => [** list] k |-> x ∈ l, F k x q).
Proof. intros ? q q'. rewrite -big_sepL_sep. by setoid_rewrite cfractional. Qed.
#[global] Instance cfractional_big_sepL2 {A B} (l1 : list A) (l2 : list B) F :
(∀ k x1 x2, CFractional (F k x1 x2)) ->
CFractional (PROP:=PROP) (funI q => [∗ list] k↦x1; x2 ∈ l1; l2, F k x1 x2 q).
Proof. intros ? q q'. rewrite -big_sepL2_sep. by setoid_rewrite cfractional. Qed.
#[global] Instance cfractional_big_sepM `{Countable K} {A} (m : gmap K A) F :
(∀ k x, CFractional (F k x)) ->
CFractional (PROP:=PROP) (funI q => [** map] k |-> x ∈ m, F k x q).
Proof. intros ? q q'. rewrite -big_sepM_sep. by setoid_rewrite cfractional. Qed.
#[global] Instance cfractional_big_sepS `{Countable A} (X : gset A) F :
(∀ x, CFractional (F x)) ->
CFractional (PROP:=PROP) (funI q => [** set] x ∈ X, F x q).
Proof. intros ? q q'. rewrite -big_sepS_sep. by setoid_rewrite cfractional. Qed.
#[global] Instance cfractional_big_sepMS `{Countable A} (X : gmultiset A) F :
(∀ x, CFractional (F x)) ->
CFractional (PROP:=PROP) (funI q => [** mset] x ∈ X, F x q).
Proof. intros ? q q'. rewrite -big_sepMS_sep. by setoid_rewrite cfractional. Qed.
(P -|- P ** P) ->
CFractional (λ _, P).
Proof. by rewrite /CFractional. Qed.
#[global] Instance persistent_cfractional `{!Persistent P, !TCOr (Affine P) (Absorbing P)} :
CFractional (fun _ => P).
Proof. apply /cfractional_dup /bi.persistent_sep_dup. Qed.
#[global] Instance cfractional_sep (F G : cQp.t -> PROP) :
CFractional F -> CFractional G ->
CFractional (fun q => F q ** G q).
Proof.
rewrite /CFractional=>HF HG q1 q2. rewrite {}HF {}HG.
split'; iIntros "([$ $] & $ & $)".
Qed.
#[global] Instance cfractional_exist {A} (P : A -> cQp.t -> PROP) :
(∀ oa, CFractional (P oa)) ->
(∀ a1 a2 q1 q2, Observe2 [| a1 = a2 |] (P a1 q1) (P a2 q2)) ->
CFractional (fun q => Exists a : A, P a q).
Proof.
intros ?? q1 q2.
rewrite -bi.exist_sep; last by intros; exact: observe_2_elim_pure.
f_equiv=>oa. apply: cfractional.
Qed.
#[global] Instance cfractional_embed `{!BiEmbed PROP PROP'} F :
CFractional F -> CFractional (fun q => embed (F q) : PROP').
Proof. intros ???. by rewrite cfractional embed_sep. Qed.
#[global] Instance as_cfractional_embed `{!BiEmbed PROP PROP'} P F q :
AsCFractional P F q -> AsCFractional (embed P) (fun q => embed (F q)) q.
Proof. split; [by rewrite ->!as_cfractional | apply _]. Qed.
#[global] Instance cfractional_big_sepL {A} (l : list A) F :
(∀ k x, CFractional (F k x)) ->
CFractional (PROP:=PROP) (funI q => [** list] k |-> x ∈ l, F k x q).
Proof. intros ? q q'. rewrite -big_sepL_sep. by setoid_rewrite cfractional. Qed.
#[global] Instance cfractional_big_sepL2 {A B} (l1 : list A) (l2 : list B) F :
(∀ k x1 x2, CFractional (F k x1 x2)) ->
CFractional (PROP:=PROP) (funI q => [∗ list] k↦x1; x2 ∈ l1; l2, F k x1 x2 q).
Proof. intros ? q q'. rewrite -big_sepL2_sep. by setoid_rewrite cfractional. Qed.
#[global] Instance cfractional_big_sepM `{Countable K} {A} (m : gmap K A) F :
(∀ k x, CFractional (F k x)) ->
CFractional (PROP:=PROP) (funI q => [** map] k |-> x ∈ m, F k x q).
Proof. intros ? q q'. rewrite -big_sepM_sep. by setoid_rewrite cfractional. Qed.
#[global] Instance cfractional_big_sepS `{Countable A} (X : gset A) F :
(∀ x, CFractional (F x)) ->
CFractional (PROP:=PROP) (funI q => [** set] x ∈ X, F x q).
Proof. intros ? q q'. rewrite -big_sepS_sep. by setoid_rewrite cfractional. Qed.
#[global] Instance cfractional_big_sepMS `{Countable A} (X : gmultiset A) F :
(∀ x, CFractional (F x)) ->
CFractional (PROP:=PROP) (funI q => [** mset] x ∈ X, F x q).
Proof. intros ? q q'. rewrite -big_sepMS_sep. by setoid_rewrite cfractional. Qed.
Lifting Fractional things via cQp.frac.
#[global] Instance fractional_cfractional_0 (P : Qp -> PROP) :
Fractional P -> CFractional (fun q => P (cQp.frac q)).
Proof. intros HP ??. apply HP. Qed.
#[global] Instance fractional_cfractional_1 {A} (P : Qp -> A -> PROP) :
Fractional1 P -> CFractional1 (fun q a => P (cQp.frac q) a).
Proof. intros HP ???. apply HP. Qed.
#[global] Instance fractional_cfractional_2 {A B} (P : Qp -> A -> B -> PROP) :
Fractional2 P -> CFractional2 (fun q a b => P (cQp.frac q) a b).
Proof. intros HP ????. apply HP. Qed.
#[global] Instance fractional_cfractional_3 {A B C} (P : Qp -> A -> B -> C -> PROP) :
Fractional3 P -> CFractional3 (fun q a b c => P (cQp.frac q) a b c).
Proof. intros HP ?????. apply HP. Qed.
#[global] Instance fractional_cfractional_4 {A B C D} (P : Qp -> A -> B -> C -> D -> PROP) :
Fractional4 P -> CFractional4 (fun q a b c d => P (cQp.frac q) a b c d).
Proof. intros HP ??????. apply HP. Qed.
#[global] Instance fractional_cfractional_5 {A B C D E} (P : Qp -> A -> B -> C -> D -> E ->PROP) :
Fractional5 P -> CFractional5 (fun q a b c d e => P (cQp.frac q) a b c d e).
Proof. intros HP ???????. apply HP. Qed.
Lifting CFractional things when using cQp.mk.
#[global] Instance cfractional_cfractional_mk_0 (P : cQp.t -> PROP) c :
CFractional P -> CFractional (fun q => P (cQp.mk c (cQp.frac q))).
Proof. intros HP ??. rewrite cQp.mk_add'. apply HP. Qed.
#[global] Instance cfractional_cfractional_mk_1 {A} (P : cQp.t -> A -> PROP) c :
CFractional1 P -> ∀ a, CFractional (fun q => P (cQp.mk c (cQp.frac q)) a).
Proof. intros HP ???. rewrite cQp.mk_add'. apply HP. Qed.
#[global] Instance cfractional_cfractional_mk_2 {A B} (P : cQp.t -> A -> B -> PROP) cm :
CFractional2 P -> ∀ a b, CFractional (fun q => P (cQp.mk cm (cQp.frac q)) a b).
Proof. intros HP ????. rewrite cQp.mk_add'. apply HP. Qed.
#[global] Instance cfractional_cfractional_mk_3 {A B C} (P : cQp.t -> A -> B -> C -> PROP) cm :
CFractional3 P -> ∀ a b c, CFractional (fun q => P (cQp.mk cm (cQp.frac q)) a b c).
Proof. intros HP ?????. rewrite cQp.mk_add'. apply HP. Qed.
#[global] Instance cfractional_cfractional_mk_4 {A B C D} (P : cQp.t -> A -> B -> C -> D -> PROP) cm :
CFractional4 P -> ∀ a b c d, CFractional (fun q => P (cQp.mk cm (cQp.frac q)) a b c d).
Proof. intros HP ??????. rewrite cQp.mk_add'. apply HP. Qed.
#[global] Instance cfractional_cfractional_mk_5 {A B C D E} (P : cQp.t -> A -> B -> C -> D -> E -> PROP) cm :
CFractional5 P -> ∀ a b c d e, CFractional (fun q => P (cQp.mk cm (cQp.frac q)) a b c d e).
Proof. intros HP ???????. rewrite cQp.mk_add'. apply HP. Qed.
End cfractional.
Module cQp_compat.
Export cfrac.cQp_compat.
Section cfractional.
Context {PROP : bi}.
Implicit Types (P Q : PROP).
Export cfrac.cQp_compat.
Section cfractional.
Context {PROP : bi}.
Implicit Types (P Q : PROP).
Lifting CFractional things into Fractional when using cQp._mut
#[export] Instance cfractional_fractional_mut_0 (P : cQp.t -> PROP) :
CFractional P -> Fractional P.
Proof. intros HP ??. cbn. rewrite cQp.mk_add'. apply HP. Qed.
#[export] Instance cfractional_fractional_mut_1 {A} (P : cQp.t -> A -> PROP) :
CFractional1 P -> Fractional1 P.
Proof. intros HP ???. cbn. rewrite cQp.mk_add'. apply HP. Qed.
#[export] Instance cfractional_fractional_mut_2 {A B} (P : cQp.t -> A -> B -> PROP) :
CFractional2 P -> Fractional2 P.
Proof. intros HP ????. cbn. rewrite cQp.mk_add'. apply HP. Qed.
#[export] Instance cfractional_fractional_mut_3 {A B C} (P : cQp.t -> A -> B -> C -> PROP) :
CFractional3 P -> Fractional3 P.
Proof. intros HP ?????. cbn. rewrite cQp.mk_add'. apply HP. Qed.
#[export] Instance cfractional_fractional_mut_4 {A B C D} (P : cQp.t -> A -> B -> C -> D -> PROP) :
CFractional4 P -> Fractional4 P.
Proof. intros HP ??????. cbn. rewrite cQp.mk_add'. apply HP. Qed.
#[export] Instance cfractional_fractional_mut_5 {A B C D E} (P : cQp.t -> A -> B -> C -> D -> E -> PROP) :
CFractional5 P -> Fractional5 P.
Proof. intros HP ???????. cbn. rewrite cQp.mk_add'. apply HP. Qed.
End cfractional.
End cQp_compat.
Section fractional.
Context {PROP : bi}.
Implicit Types (P Q : PROP).
Multiplication
#[global] Instance fractional_cfractional_mul_r (F G : Qp -> PROP) (p : Qp) :
(∀ q, AsFractional (F q) G (q * p)) ->
CFractional (fun q => F (cQp.frac q)).
Proof.
intros HF q1 q2. do !rewrite [F _]as_fractional.
rewrite Qp.mul_add_distr_r.
move: (HF 1%Qp) => [] _ //.
Qed.
#[global] Instance fractional_cfractional_mul_l (F G : Qp -> PROP) (p : Qp) :
(∀ q, AsFractional (F q) G (p * q)) ->
CFractional (fun q => F (cQp.frac q)).
Proof.
intros HF q1 q2. do !rewrite [F _]as_fractional.
rewrite Qp.mul_add_distr_l.
move: (HF 1%Qp) => [] _ //.
Qed.
Lemma cfractional_list_div (P : cQp.t -> PROP) `{_ : CFractional _ P} q n :
(0 < n)%N ->
P (cQp.m q) |-- [** list] _ ∈ replicateN n (), P (cQp.m (q / N_to_Qp n)).
Proof.
move=>/N.succ_pred_pos<-; set n' := (N.pred _).
move: {n}n' q; apply: N.peano_ind=>[|n]; first
by move=>q; rewrite /= Qp.div_1 bi.sep_emp.
move=>HIP q; rewrite N_to_Qp_succ; last lia.
set p := (N_to_Qp _).
rewrite (replicateN_S _ ((N.succ _))) big_opL_cons.
have{1}->: (cQp.mut q = cQp.m (q * p / (p + 1)) + cQp.m (q / (p + 1)))%cQp.
{
rewrite /cQp.add/=; f_equal.
by rewrite -Qp.div_add_distr -{3}[q]Qp.mul_1_r -Qp.mul_add_distr_l
-{2}[(p + 1)%Qp]Qp.mul_1_l Qp.div_mul_cancel_r Qp.div_1.
}
iIntros "H"; iDestruct (cfractional with "H") as "[H $]".
iDestruct (HIP (q * p / (p + 1))%Qp with "H") as "?".
by rewrite Qp.div_div Qp.div_mul_cancel_r.
Qed.
(∀ q, AsFractional (F q) G (q * p)) ->
CFractional (fun q => F (cQp.frac q)).
Proof.
intros HF q1 q2. do !rewrite [F _]as_fractional.
rewrite Qp.mul_add_distr_r.
move: (HF 1%Qp) => [] _ //.
Qed.
#[global] Instance fractional_cfractional_mul_l (F G : Qp -> PROP) (p : Qp) :
(∀ q, AsFractional (F q) G (p * q)) ->
CFractional (fun q => F (cQp.frac q)).
Proof.
intros HF q1 q2. do !rewrite [F _]as_fractional.
rewrite Qp.mul_add_distr_l.
move: (HF 1%Qp) => [] _ //.
Qed.
Lemma cfractional_list_div (P : cQp.t -> PROP) `{_ : CFractional _ P} q n :
(0 < n)%N ->
P (cQp.m q) |-- [** list] _ ∈ replicateN n (), P (cQp.m (q / N_to_Qp n)).
Proof.
move=>/N.succ_pred_pos<-; set n' := (N.pred _).
move: {n}n' q; apply: N.peano_ind=>[|n]; first
by move=>q; rewrite /= Qp.div_1 bi.sep_emp.
move=>HIP q; rewrite N_to_Qp_succ; last lia.
set p := (N_to_Qp _).
rewrite (replicateN_S _ ((N.succ _))) big_opL_cons.
have{1}->: (cQp.mut q = cQp.m (q * p / (p + 1)) + cQp.m (q / (p + 1)))%cQp.
{
rewrite /cQp.add/=; f_equal.
by rewrite -Qp.div_add_distr -{3}[q]Qp.mul_1_r -Qp.mul_add_distr_l
-{2}[(p + 1)%Qp]Qp.mul_1_l Qp.div_mul_cancel_r Qp.div_1.
}
iIntros "H"; iDestruct (cfractional with "H") as "[H $]".
iDestruct (HIP (q * p / (p + 1))%Qp with "H") as "?".
by rewrite Qp.div_div Qp.div_mul_cancel_r.
Qed.
Lifting CFractional things into Fractional when using cQp.mk
#[global] Instance cfractional_fractional_mk_0 (P : cQp.t -> PROP) is_const :
CFractional P -> Fractional (fun q => P (cQp.mk is_const q)).
Proof. intros HP ??. by rewrite cQp.mk_add' HP. Qed.
#[global] Instance cfractional_fractional_mk_1 {A} (P : cQp.t -> A -> PROP) is_const :
CFractional1 P -> Fractional1 (fun q a => P (cQp.mk is_const q) a).
Proof. intros HP ???. by rewrite cQp.mk_add' HP. Qed.
#[global] Instance cfractional_fractional_mk_2 {A B} (P : cQp.t -> A -> B -> PROP) is_const :
CFractional2 P -> Fractional2 (fun q a b => P (cQp.mk is_const q) a b).
Proof. intros HP ????. by rewrite cQp.mk_add' HP. Qed.
#[global] Instance cfractional_fractional_mk_3 {A B C} (P : cQp.t -> A -> B -> C -> PROP) is_const :
CFractional3 P -> Fractional3 (fun q a b c => P (cQp.mk is_const q) a b c).
Proof. intros HP ?????. by rewrite cQp.mk_add' HP. Qed.
#[global] Instance cfractional_fractional_mk_4 {A B C D} (P : cQp.t -> A -> B -> C -> D -> PROP) is_const :
CFractional4 P -> Fractional4 (fun q a b c d => P (cQp.mk is_const q) a b c d).
Proof. intros HP ??????. by rewrite cQp.mk_add' HP. Qed.
#[global] Instance cfractional_fractional_mk_5 {A B C D E} (P : cQp.t -> A -> B -> C -> D -> E -> PROP) is_const :
CFractional5 P -> Fractional5 (fun q a b c d e => P (cQp.mk is_const q) a b c d e).
Proof. intros HP ???????. by rewrite cQp.mk_add' HP. Qed.
End fractional.
Section proofmode.
Context {PROP : bi}.
Implicit Types (P Q : PROP) (F G : cQp.t -> PROP).
#[local] Lemma as_cfractional_split P P1 P2 F q q1 q2 :
AsCFractional P F q -> SplitCFrac q q1 q2 ->
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
P -|- P1 ** P2.
Proof.
intros [->?] ? [->_] [->_]. by rewrite (split_cfrac q) cfractional.
Qed.
#[local] Lemma as_cfractional_combine P1 P2 P F q1 q2 q :
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
CombineCFrac q1 q2 q -> AsCFractional P F q ->
P -|- P1 ** P2.
Proof.
intros [->?] [->_] ? [->_]. by rewrite -cfractional combine_cfrac.
Qed.
Context {PROP : bi}.
Implicit Types (P Q : PROP) (F G : cQp.t -> PROP).
#[local] Lemma as_cfractional_split P P1 P2 F q q1 q2 :
AsCFractional P F q -> SplitCFrac q q1 q2 ->
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
P -|- P1 ** P2.
Proof.
intros [->?] ? [->_] [->_]. by rewrite (split_cfrac q) cfractional.
Qed.
#[local] Lemma as_cfractional_combine P1 P2 P F q1 q2 q :
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
CombineCFrac q1 q2 q -> AsCFractional P F q ->
P -|- P1 ** P2.
Proof.
intros [->?] [->_] ? [->_]. by rewrite -cfractional combine_cfrac.
Qed.
#[global] Instance into_sep_cfractional P P1 P2 F q q1 q2 :
AsCFractional P F q -> SplitCFrac q q1 q2 ->
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
IntoSep P P1 P2.
Proof.
intros. rewrite/IntoSep. by rewrite (as_cfractional_split P).
Qed.
#[global] Instance from_sep_cfractional_split P P1 P2 F q q1 q2 :
AsCFractional P F q -> SplitCFrac q q1 q2 ->
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
FromSep P P1 P2.
Proof.
intros. rewrite/FromSep. by rewrite -(as_cfractional_split P).
Qed.
AsCFractional P F q -> SplitCFrac q q1 q2 ->
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
FromSep P P1 P2.
Proof.
intros. rewrite/FromSep. by rewrite -(as_cfractional_split P).
Qed.
#[global] Instance combine_sep_as_cfractional_bwd P1 P2 P F q1 q2 q :
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
CombineCFrac q1 q2 q -> AsCFractional P F q ->
CombineSepAs P1 P2 P | 100.
Proof.
intros. rewrite /CombineSepAs. by rewrite -as_cfractional_combine.
Qed.
End proofmode.
AsCFractional P1 F q1 -> AsCFractional P2 F q2 ->
CombineCFrac q1 q2 q -> AsCFractional P F q ->
CombineSepAs P1 P2 P | 100.
Proof.
intros. rewrite /CombineSepAs. by rewrite -as_cfractional_combine.
Qed.
End proofmode.
Useful in rare cases. Here because the proof reuses IPM.
#[global] Instance cfractional_ignore_exist {PROP : bi} (P : cQp.t -> PROP)
`{HcfP : CFractional0 P} :
CFractional (λI _, ∃ q, P q).
Proof.
have ? : AsCFractional0 P by solve_as_cfrac.
apply cfractional_dup. iSplit.
{ by iIntros "[% [$ $]]". }
iIntros "[[% A] [% B]]". iCombine "A B" as "$".
Qed.
`{HcfP : CFractional0 P} :
CFractional (λI _, ∃ q, P q).
Proof.
have ? : AsCFractional0 P by solve_as_cfrac.
apply cfractional_dup. iSplit.
{ by iIntros "[% [$ $]]". }
iIntros "[[% A] [% B]]". iCombine "A B" as "$".
Qed.
Observations from validity
Notation CFrac0Valid P := (∀ q p,
cQpTC.FRAC q p -> Observe [| p ≤ 1 |]%Qp (P q)) (only parsing).
Notation CFrac0Valid2 P := (∀ q1 q2 p1 p2 q,
cQpTC.FRAC q1 p1 -> cQpTC.FRAC q2 p2 -> QpTC.ADD p1 p2 q ->
Observe2 [| q ≤ 1 |]%Qp (P q1) (P q2)) (only parsing).
Notation CFrac0Exclusive P := (∀ q1,
cQpTC.FRAC q1 1 -> ∀ q2, Observe2 False (P q1) (P q2)) (only parsing).
Section valid_0.
#[local] Set Default Proof Using "Type*".
Context {PROP : bi} (P : cQp.t -> PROP) `{!CFracValid0 P}.
#[global] Instance cfrac_0_valid : CFrac0Valid P.
Proof. intros ?? [<-]. apply cfrac_valid_0. Qed.
Section examples.
Lemma mut q : Observe [| q ≤ 1 |]%Qp (P (cQp.mut q)).
Proof. apply _. Abort.
Lemma scale_mut p q :
Observe [| p * q ≤ 1 |]%Qp (P (cQp.scale p (cQp.mut q))).
Proof. apply _. Abort.
Lemma scale_mut p1 p2 q :
Observe [| p1 * (p2 * q) ≤ 1 |]%Qp
(P (cQp.scale p1 (cQp.scale p2 (cQp.mut q)))).
Proof. apply _. Abort.
End examples.
#[global] Instance cfrac_0_valid_2 : CFractional0 P -> CFrac0Valid2 P.
Proof.
intros Hfrac ????? [Hq1] [Hq2] [Hq]. rewrite -{}Hq -{}Hq1 -{}Hq2.
apply observe_uncurry. rewrite -{}Hfrac. apply: cfrac_0_valid.
Qed.
#[global] Instance cfrac_0_exclusive : CFractional0 P -> CFrac0Exclusive P.
Proof.
intros. iIntros "P1 P2".
by iDestruct (cfrac_0_valid_2 with "P1 P2") as %?%Qp.not_add_le_l.
Qed.
End valid_0.
Notation CFrac1Valid P := (∀ q p,
cQpTC.FRAC q p -> ∀ a, Observe [| p ≤ 1 |]%Qp (P q a)) (only parsing).
Notation CFrac1Valid2 P := (∀ q1 q2 p1 p2 q,
cQpTC.FRAC q1 p1 -> cQpTC.FRAC q2 p2 -> QpTC.ADD p1 p2 q ->
∀ a1 a2, Observe2 [| q ≤ 1 |]%Qp (P q1 a1) (P q2 a2)) (only parsing).
Notation CFrac1Exclusive P := (∀ q1,
cQpTC.FRAC q1 1 -> ∀ q2 a1 a2, Observe2 False (P q1 a1) (P q2 a2)) (only parsing).
Section valid_1.
#[local] Set Default Proof Using "Type*".
Context {A} {PROP : bi} (P : cQp.t -> A -> PROP) `{!CFracValid1 P}.
#[global] Instance cfrac_1_valid : CFrac1Valid P.
Proof. intros ?? [<-] *. apply cfrac_valid_1. Qed.
#[global] Instance cfrac_1_valid_2 : CFractional1 P -> AgreeCF1 P -> CFrac1Valid2 P.
Proof.
intros Hfrac Hagree ????? [Hq1] [Hq2] [Hq] *. rewrite -{}Hq -{}Hq1 -{}Hq2.
iIntros "P1 P2". iDestruct (Hagree with "P1 P2") as %<-.
iCombine "P1 P2" as "P". rewrite -Hfrac. iApply (cfrac_1_valid with "P").
Qed.
#[global] Instance cfrac_1_exclusive : CFractional1 P -> AgreeCF1 P -> CFrac1Exclusive P.
Proof.
intros. iIntros "P1 P2".
by iDestruct (cfrac_1_valid_2 with "P1 P2") as %?%Qp.not_add_le_l.
Qed.
End valid_1.
Notation CFrac2Valid P := (∀ q p,
cQpTC.FRAC q p -> ∀ a b, Observe [| p ≤ 1 |]%Qp (P q a b)) (only parsing).
Section valid_2.
#[local] Set Default Proof Using "Type*".
Context {A B} {PROP : bi} (P : cQp.t -> A -> B -> PROP) `{!CFracValid2 P}.
#[global] Instance cfrac_2_valid : CFrac2Valid P.
Proof. intros ?? [<-] *. apply cfrac_valid_2. Qed.
End valid_2.
Notation CFrac3Valid P := (∀ q p,
cQpTC.FRAC q p -> ∀ a b c, Observe [| p ≤ 1 |]%Qp (P q a b c)) (only parsing).
Section valid_3.
#[local] Set Default Proof Using "Type*".
Context {A B C} {PROP : bi} (P : cQp.t -> A -> B -> C -> PROP) `{!CFracValid3 P}.
#[global] Instance cfrac_3_valid : CFrac3Valid P.
Proof. intros ?? [<-] *. apply cfrac_valid_3. Qed.
End valid_3.
Notation CFrac4Valid P := (∀ q p,
cQpTC.FRAC q p -> ∀ a b c d, Observe [| p ≤ 1 |]%Qp (P q a b c d)) (only parsing).
Section valid_4.
#[local] Set Default Proof Using "Type*".
Context {A B C D} {PROP : bi} (P : cQp.t -> A -> B -> C -> D -> PROP) `{!CFracValid4 P}.
#[global] Instance cfrac_4_valid : CFrac4Valid P.
Proof. intros ?? [<-] *. apply cfrac_valid_4. Qed.
End valid_4.
Notation CFrac5Valid P := (∀ q p,
cQpTC.FRAC q p -> ∀ a b c d e, Observe [| p ≤ 1 |]%Qp (P q a b c d e)) (only parsing).
Section valid_5.
#[local] Set Default Proof Using "Type*".
Context {A B C D E} {PROP : bi} (P : cQp.t -> A -> B -> C -> D -> E -> PROP) `{!CFracValid5 P}.
#[global] Instance cfrac_5_valid : CFrac5Valid P.
Proof. intros ?? [<-] *. apply cfrac_valid_5. Qed.
End valid_5.