bedrock.lang.bi.fractional
(*
* Copyright (c) 2021-2022 BlueRock Security, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export iris.bi.lib.fractional.
Require Import bedrock.lang.bi.prelude.
Require Import bedrock.lang.bi.observe.
Require Import bedrock.lang.proofmode.proofmode.
* Copyright (c) 2021-2022 BlueRock Security, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export iris.bi.lib.fractional.
Require Import bedrock.lang.bi.prelude.
Require Import bedrock.lang.bi.observe.
Require Import bedrock.lang.proofmode.proofmode.
Simple extensions to iris.bi.lib.fractional
- Tactic solve_as_frac for solving AsFractional
- FractionalN, AsFractionalN, AgreeF1, LaterAgreeF1 notation to save typing
- Some properties of fractional predicates
Do not extend this module. It exists for backwards compatibility.
Notation Fractional0 := Fractional (only parsing).
Notation Fractional1 P := (∀ a, Fractional (fun q => P q a)).
Notation Fractional2 P := (∀ a b, Fractional (fun q => P q a b)).
Notation Fractional3 P := (∀ a b c, Fractional (fun q => P q a b c)).
Notation Fractional4 P := (∀ a b c d, Fractional (fun q => P q a b c d)).
Notation Fractional5 P := (∀ a b c d e, Fractional (fun q => P q a b c d e)).
Notation Fractional1 P := (∀ a, Fractional (fun q => P q a)).
Notation Fractional2 P := (∀ a b, Fractional (fun q => P q a b)).
Notation Fractional3 P := (∀ a b c, Fractional (fun q => P q a b c)).
Notation Fractional4 P := (∀ a b c d, Fractional (fun q => P q a b c d)).
Notation Fractional5 P := (∀ a b c d e, Fractional (fun q => P q a b c d e)).
Notation AsFractional0 P := (∀ q, AsFractional (P q) P q).
Notation AsFractional1 P := (∀ q a, AsFractional (P q a) (fun q => P%I q a) q).
Notation AsFractional2 P := (∀ q a b, AsFractional (P q a b) (fun q => P%I q a b) q).
Notation AsFractional3 P := (∀ q a b c, AsFractional (P q a b c) (fun q => P%I q a b c) q).
Notation AsFractional4 P := (∀ q a b c d, AsFractional (P q a b c d) (fun q => P%I q a b c d) q).
Notation AsFractional5 P := (∀ q a b c d e, AsFractional (P q a b c d e) (fun q => P%I q a b c d e) q).
Notation AsFractional1 P := (∀ q a, AsFractional (P q a) (fun q => P%I q a) q).
Notation AsFractional2 P := (∀ q a b, AsFractional (P q a b) (fun q => P%I q a b) q).
Notation AsFractional3 P := (∀ q a b c, AsFractional (P q a b c) (fun q => P%I q a b c) q).
Notation AsFractional4 P := (∀ q a b c d, AsFractional (P q a b c d) (fun q => P%I q a b c d) q).
Notation AsFractional5 P := (∀ q a b c d e, AsFractional (P q a b c d e) (fun q => P%I q a b c d e) q).
LaterAgreeF1 P is similar to AgreeF1 P, but only provides equivalence
under a later. This is typically used for higher-order agreement.
Notation LaterAgreeF1 P :=
(∀ (q1 q2 : Qp) a1 a2, Observe2 (▷ (a1 ≡ a2)) (P q1 a1) (P q2 a2)).
End nary.
Section with_bi.
Context {PROP : bi}.
#[global] Instance fractional_exist {A} (P : A → Qp → PROP)
(Hfrac : ∀ oa, Fractional (P oa))
(Hobs : ∀ a1 a2 q1 q2, Observe2 [| a1 = a2 |] (P a1 q1) (P a2 q2)) :
Fractional (λ q, ∃ a : A, P a q)%I.
Proof.
intros q1 q2.
rewrite -bi.exist_sep; last by intros; exact: observe_2_elim_pure.
f_equiv=>oa. apply: fractional.
Qed.
(∀ (q1 q2 : Qp) a1 a2, Observe2 (▷ (a1 ≡ a2)) (P q1 a1) (P q2 a2)).
End nary.
Section with_bi.
Context {PROP : bi}.
#[global] Instance fractional_exist {A} (P : A → Qp → PROP)
(Hfrac : ∀ oa, Fractional (P oa))
(Hobs : ∀ a1 a2 q1 q2, Observe2 [| a1 = a2 |] (P a1 q1) (P a2 q2)) :
Fractional (λ q, ∃ a : A, P a q)%I.
Proof.
intros q1 q2.
rewrite -bi.exist_sep; last by intros; exact: observe_2_elim_pure.
f_equiv=>oa. apply: fractional.
Qed.
This follows by unfolding, but that was surprising.
Lemma fractional_dup (P : PROP) :
(P ⊣⊢ P ∗ P) ->
Fractional (λ _, P).
Proof. by rewrite /Fractional. Qed.
#[global] Instance fractional_ignore_exist (P : Qp -> PROP) {HcfP : Fractional0 P} :
Fractional (λI _, ∃ q, P q).
Proof.
have ? : AsFractional0 P by solve_as_frac.
apply fractional_dup. iSplit.
{ by iIntros "[% [$ $]]". }
iIntros "[[% A] [% B]]". iCombine "A B" as "$".
Qed.
#[global] Instance big_sepL2_agreef1 {A C} {P : A -> Qp -> C -> PROP} xs ys1 ys2 (q1 q2 : Qp)
`{∀ a, AgreeF1 (P a)} :
Observe2 [| ys1 = ys2 |]
([∗ list] hpa;x ∈ xs;ys1, P hpa q1 x)
([∗ list] hpa;x ∈ xs;ys2, P hpa q2 x).
Proof.
apply observe_2_intro_only_provable.
iIntros "YS1 YS2"; iInduction xs as [|x xs] "IH" forall (ys1 ys2);
case: ys1 ys2 => [|y1 ys1] [|y2 ys2] //=; iRevert "YS1 YS2".
iIntros "[Y1 YS1] [Y2 YS2]".
iDestruct (observe_2_elim_pure (y1 = y2) with "Y1 Y2") as %<-.
by iDestruct ("IH" with "YS1 YS2") as %<-.
Qed.
End with_bi.
(P ⊣⊢ P ∗ P) ->
Fractional (λ _, P).
Proof. by rewrite /Fractional. Qed.
#[global] Instance fractional_ignore_exist (P : Qp -> PROP) {HcfP : Fractional0 P} :
Fractional (λI _, ∃ q, P q).
Proof.
have ? : AsFractional0 P by solve_as_frac.
apply fractional_dup. iSplit.
{ by iIntros "[% [$ $]]". }
iIntros "[[% A] [% B]]". iCombine "A B" as "$".
Qed.
#[global] Instance big_sepL2_agreef1 {A C} {P : A -> Qp -> C -> PROP} xs ys1 ys2 (q1 q2 : Qp)
`{∀ a, AgreeF1 (P a)} :
Observe2 [| ys1 = ys2 |]
([∗ list] hpa;x ∈ xs;ys1, P hpa q1 x)
([∗ list] hpa;x ∈ xs;ys2, P hpa q2 x).
Proof.
apply observe_2_intro_only_provable.
iIntros "YS1 YS2"; iInduction xs as [|x xs] "IH" forall (ys1 ys2);
case: ys1 ys2 => [|y1 ys1] [|y2 ys2] //=; iRevert "YS1 YS2".
iIntros "[Y1 YS1] [Y2 YS2]".
iDestruct (observe_2_elim_pure (y1 = y2) with "Y1 Y2") as %<-.
by iDestruct ("IH" with "YS1 YS2") as %<-.
Qed.
End with_bi.