bedrock.noimport.doc.cpp.howto_sequential
(*
* Copyright (C) 2020-2024 BlueRock Security, Inc.
* All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*)
Require Import bedrock.lang.cpp.
Import cQp_compat.
#[local] Set Warnings "-non-recursive". (* disable warning about llistR *)
#[local] Open Scope Z_scope.
#[local] Open Scope bs_scope.
* Copyright (C) 2020-2024 BlueRock Security, Inc.
* All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*)
Require Import bedrock.lang.cpp.
Import cQp_compat.
#[local] Set Warnings "-non-recursive". (* disable warning about llistR *)
#[local] Open Scope Z_scope.
#[local] Open Scope bs_scope.
Range
class Range {
private:
unsigned long _begin;
size_t _size;
...
};
Coq Model of Range
An example Range, the interval (inclusive 10, 13), is built as:
To extract the begin and size of a Range like
range_ex, one can use projections corresponding to the fields:
Compute range_ex.(begin).
= 10
: Z
Compute range_ex.(size).
= 3
: Z
Now let's write the representation predicate. It will refer to the
_begin and _size fields of the C++ struct, which are autogenerated
by cpp2v as:
Range: Representation Predicate
Notation "'::Range::_begin'" := (Nscoped (Nglobal $ Nid "Range") (Nid "_begin"))
(in custom cppglobal at level 0).
Notation "'::Range::_size'" := (Nscoped (Nglobal $ Nid "Range") (Nid "_size"))
(in custom cppglobal at level 0).
Definition _begin := _field "Range::_begin".
Definition _size := _field "Range::_size".
Here's the first version, which follows the style
discussed in the first chapter.
It's a Definition in Coq that takes two
parameters, the fractional permission q (which could be 1, indicating
write permission), and r : Range, the Coq model of the range.
Definition RangeR3 (q : Qp) (r : Range) : Rep :=
_begin |-> ulongR q r.(begin) ** (*rep star*)
_size |-> ulongR q r.(size).
RangeR3 is a function (predicate), which when applied to a start address ("this"),
will assert the memory representation starting at that address.
This function nature can be made explicit using as_Rep, which gives
us explicit access to the this pointer as a function argument.
Definition RangeR2 (q : Qp) (r : Range) : Rep :=
as_Rep (fun this =>
this |-> (_begin |-> ulongR q r.(begin) ** (*rep star*)
_size |-> ulongR q r.(size))
).
as_Rep (fun this =>
this |-> (_begin |-> ulongR q r.(begin) ** (*rep star*)
_size |-> ulongR q r.(size))
).
Definition RangeR1 (q : Qp) (r : Range) : Rep :=
as_Rep (fun this =>
this |-> (_begin |-> ulongR q r.(begin)) ** (*mpred star*)
this |-> (_begin |-> ulongR q r.(size))
).
as_Rep (fun this =>
this |-> (_begin |-> ulongR q r.(begin)) ** (*mpred star*)
this |-> (_begin |-> ulongR q r.(size))
).
this |-> (_begin |-> ulongR q r.(begin))
Binary Search Trees
template <typename T = int>
struct Tree {
T _data;
Tree<T>* _left;
Tree<T>* _right;
};
Inductive tree (A : Type) : Type :=
| leaf
| node (data : A) (left : tree A) (right : tree A).
Arguments leaf {_}.
Arguments node {_} _ _ _.
leaf is the empty tree. node d l r is the tree node containing
data d, left subtree l and right subtree r. tree is polymorphic;
it contains data d of type A for any type A. Below, we'll instantiate
tree to A := Z and to other types.
For example, here's the tree with root 3, left child 1, and right
child 5.
We can define pure Coq functions on tree for use in specs. For example,
in_tree x t is the proposition that reads "tree x contains key t".
It's defined by recursion on t.
A leaf never contains a key (represented by False).
Key x is in_tree node y l r when:
(1) x = y; or
(2) x is in the left subtree l; or
(3) x is in the right subtree r.
Fixpoint in_tree {A:Type} (x : A) (t : tree A) : Prop :=
match t with
| leaf => False
| node y l r => x=y \/ in_tree x l \/ in_tree x r
end.
Now we define the representation predicate treeR for trees.
treeR is parameterized inside a Section by:
(1) A : Type, the type of data stored in the trees; and
(2) R : Qp -> A -> Rep, a representation predicate for A.
We'll use R to define how that data stored in the tree is represented
in memory.
Section treeR.
Context {A : Type} (R : Qp -> A -> Rep).
Fixpoint treeR (q : Qp) (t : tree A) : Rep :=
as_Rep (fun this =>
match t with
| leaf => [| this = nullptr |] (*this |-> nullR*)
| node d l r =>
Exists (lp : ptr) (rp : ptr),
lp |-> treeR q l **
rp |-> treeR q r **
this |-> (_field _data |-> R q d **
_field _left |-> ptrR<_Tree> q lp **
_field _right |-> ptrR<_Tree> q rp)
end
).
The treeR predicate is defined by recursion on the Coq
tree t. Leaves are represented by the nullptr, which we write as:
[| this = nullptr |]
When the tree is a node d l r, we assert that field _data contains
R q d (representation of d with permission q) and that there exist
pointers lp and rp stored at the _left and _right fields.
We separately assert that:
(1) At lp, there's a treeR q l, memory implementing the left subtree; and
(2) At rp, there's a treeR q r, memory implementing the right subtree.
[| this = nullptr |]
Sorted Binary Trees
Section sorted.
Context {A} (lt : A -> A -> Prop).
Fixpoint sorted (t : tree A) : Prop :=
match t with
| leaf => True
| node d l r =>
sorted l /\
sorted r /\
(forall x, in_tree x l -> lt x d) /\
(forall y, in_tree y r -> lt d y)
end.
End sorted.
Definition ZbstR (q : Qp) (t : tree Z) : Rep :=
treeR (fun q z => uintR q z) q t ** [| sorted Z.lt t |].
treeR (fun q z => uintR q z) q t ** [| sorted Z.lt t |].
(fun q z => uintR q z) instantiates treeR's parameter R to the
representation predicate of unsigned integers.
count is a Coq function that computes the number of nodes in a Coq tree.
Count
Fixpoint count (t : tree Z) : Z :=
match t with
| leaf => 0
| node d l r => 1 + count l + count r
end.
(**Compute count leaf.*)
match t with
| leaf => 0
| node d l r => 1 + count l + count r
end.
(**Compute count leaf.*)
= 0
: Z Compute count ex_tree. = 3
: Z
count_spec uses Coq count to specify a C++ function that counts the
number of nodes in a BST:
unsigned int Tree::count() const;
unsigned int Tree::count() const;
Definition count_spec (this : ptr) :=
cpp_spec Tint [] $
\with (q : Qp) (t : tree Z)
\prepost this |-> treeR (fun q z => uintR q z) q t
\post[Vint (trim 32 (count t))] emp.
cpp_spec Tint [] $
\with (q : Qp) (t : tree Z)
\prepost this |-> treeR (fun q z => uintR q z) q t
\post[Vint (trim 32 (count t))] emp.
For more details the syntax/notations for writing the specifications of functions,
please refer to cpp2v/doc/specs.md.
We trim the count in the postcondition since it might overflow.
Alternatively, we could impose a bounds condition in the precondition:
\pre [| bound W64 Unsigned (count t) |]
count doesn't require that t be sorted so the prepost uses just
treeR, not ZbstR.
Here's the spec for a function that inserts a key into a tree:
bool Tree::insert(int);
On duplicate keys, insert does nothing (we treat the tree as a set rather
than a multiset).
\pre [| bound W64 Unsigned (count t) |]
Insert
bool Tree::insert(int);
Definition insert_spec (this : ptr) :=
cpp_spec Tbool [Tint] $
\with (t : tree Z)
\arg{x} "x" (Vint x)
\pre this |-> ZbstR 1 t
\post Exists t',
this |-> ZbstR 1 t' **
[| forall y, in_tree y t' <-> (y=x \/ in_tree y t) |].
cpp_spec Tbool [Tint] $
\with (t : tree Z)
\arg{x} "x" (Vint x)
\pre this |-> ZbstR 1 t
\post Exists t',
this |-> ZbstR 1 t' **
[| forall y, in_tree y t' <-> (y=x \/ in_tree y t) |].
More intensionally, we could write this spec using a Coq implementation of
insert:
Fixpoint insert x (t : tree Z) : tree Z :=
match t with
| leaf => node x leaf leaf
| node y l r =>
if Z.ltb x y then node y (insert x l) r
else if Z.ltb y x then node y l (insert x r)
else t
end.
Definition insert_spec' (this : ptr) :=
cpp_spec Tbool [Tint] $
\with (t : tree Z)
\arg{x} "x" (Vint x)
\pre this |-> ZbstR 1 t
\post this |-> ZbstR 1 (insert x t).
match t with
| leaf => node x leaf leaf
| node y l r =>
if Z.ltb x y then node y (insert x l) r
else if Z.ltb y x then node y l (insert x r)
else t
end.
Definition insert_spec' (this : ptr) :=
cpp_spec Tbool [Tint] $
\with (t : tree Z)
\arg{x} "x" (Vint x)
\pre this |-> ZbstR 1 t
\post this |-> ZbstR 1 (insert x t).
EXERCISE: Linked Lists
struct List {
int _data;
List* next;
};
Parameter _List : type.
Parameter _next : field.
Inductive llist : Type :=
| nil : llist
| cons : Z -> llist -> llist.
Axiom FILL_IN : forall {T}, T. (* Used to mark exercises in this file *)
Fixpoint llistR (q : Qp) (l : llist) : Rep := FILL_IN.
Range Maps
template<typename T>
struct Entry {
Range _range;
T _payload;
};
template<typename T>
using EntryTree = Tree<Entry<T>>;
Here's the corresponding representation predicate:
Definition EntryR (q : Qp) (e : Entry Z) : Rep :=
_field _range |-> RangeR q e.(range) **
_field _payload |-> intR q e.(payload).
_field _range |-> RangeR q e.(range) **
_field _payload |-> intR q e.(payload).
One range is less than another if its begin value is less-than.
Entries are less-than when their Ranges are less-than.
The representation predicate of an Entry BST:
Definition Entry_bstR (q : Qp) (t : tree (Entry Z)) : Rep :=
treeR EntryR q t ** [| Entry_sorted t |].
treeR EntryR q t ** [| Entry_sorted t |].
Putting the pieces together, here's the function spec for
lookup, which maps an address x in a trees of Entries to the
corresponding Entry, if any.
Definition in_range (r : Range) (x : Z) :=
r.(begin) <= x /\ x < r.(begin) + r.(size).
Definition payload_of_address (t : tree (Entry Z)) (x : Z) (p : Z) : Prop :=
exists e : Entry Z,
in_tree e t /\ in_range e.(range) x /\ p = e.(payload).
borrow_from all borrow, which is used in lookup_spec below, encapsulates
a pattern for "borrowing" the resources borrow from a larger world all.
With borrow_from you get access to two disjoint resources:
(1) You have access to borrow; and
(2) If you give up borrow, you get back all.
Using borrow, we can write the specification for lookup:
Definition lookup_spec (this : ptr) :=
cpp_spec Tbool [Tint; Tptr Tint] $
\arg{x} "x" (Vint x)
\arg{out} "out" (Vptr out)
\with (q : Qp) (t : tree (Entry Z))
\pre out |-> anyR (Tptr (Tnamed _Entry)) 1
\prepost this |-> Entry_bstR q t
\post{r}[Vbool r]
cpp_spec Tbool [Tint; Tptr Tint] $
\arg{x} "x" (Vint x)
\arg{out} "out" (Vptr out)
\with (q : Qp) (t : tree (Entry Z))
\pre out |-> anyR (Tptr (Tnamed _Entry)) 1
\prepost this |-> Entry_bstR q t
\post{r}[Vbool r]
A pointer to the looked-up entry is passed in the
out parameter out.
We also return a "borrow" from the Entry_bstR q t, the fact
that at p there's an EntryR q e with a matching Range.
(Note: This spec allows the implementation to change the out parameter
arbitrarily in the error case.)