
Towards Modular Specification and Verification of
Concurrent Hypervisor-based Isolation

Hoang-Hai Dang

BedRock Systems, Inc

hai@bedrocksystems.com

David Swasey

BedRock Systems, Inc

david@bedrocksystems.com

Gregory Malecha

BedRock Systems, Inc

gregory@bedrocksystems.com

Keywords NOVA, concurrent separation logic, robust safety,

hypervisor

1 Introduction
NOVA [10] is a microhypervisor that executes in a privileged

processor mode and provides basic services for virtualization,

isolation, scheduling, and management of physical system

resources. NOVA’s design goal is to reduce the critical code

base, and to leave richer virtualization features to user appli-

cations, such as a Virtual Machine Monitor (VMM), that run

in a less privileged mode (e.g. user mode). The size (about

17K lines of code and 15 hypercalls [9]) makes it a suitable

target for formal verification; however, its complexity poses

several challenges:

• NOVA claims that it behaves robustly when running

arbitrary user code.

• NOVA provides a rich capability-based API to interact

with kernel objects representing system resources.

• The implementation (in C++ and assembly) is actively

developed and supports both ARMv8 and x86-64. It is

also highly optimized and concurrent, leveraging both

atomics
1
as well as systems-level features.

In this talk, we focus on our approach to specify and ver-

ify NOVA using concurrent separation logic. In addition, we

consider how this approach is compatible with reasoning

about untrusted code.

2 A Hypercall’s Path through NOVA
NOVA extends the semantics of the physical machine with

a set of hypercalls. Figure 1 shows the basic steps of NOVA

handling a hypercall from a user application (e.g., a VMM).

1. The user application (C++) calls a function implemented

in the architecture-specific assembly (ISA), to set up

the contents of the required CPU registers with valid

arguments, followingNOVA’s calling convention (ABI).

2. From the ISA user mode, control is passed on to NOVA

in ISA privileged mode, where (in assembly) NOVA

parses registers, sets up the C++ call stack, and re-

enters C++.

1
While NOVA uses weak-memory atomics, our current verification focuses

on a variant of NOVA that uses SC atomics.

PriSC’24, January 20, 2024, London, UK

Figure 1. A path of a hypercall into NOVA

3. NOVA’s core logic is implemented in C++ but must still

drive system components such as interrupt controllers

and page tables.

4. NOVA’s C++ code returns its results through assembly

by resetting its stack, updating user registers with the

results of the hypercall, and returning to user mode.

3 Specify and Verify NOVA
Our goal is to achieve scalability in verifying NOVA and its

clients. In addition to functional correctness properties, we
want to prove the following properties:

• robust safety: user mode code cannot break NOVA or

critical components like the VMM;

• isolation: any code running atop NOVA in user mode

can only access physical resources assigned to it; and

• refinement: the NOVA-extended ISA semantics allows

multiple VMs to run on the same machine as if they

were running on separate machines.

Towards that end, we exploit concurrent separation logics

(CSLs) and their state-of-the-art features to construct small-

footprint, highly-expressive and precise specifications.

As the first step, we have developed resources and logically

atomic specifications [3, 6, 11] for most of NOVA’s kernel

objects and hypercalls. Using BRiCk [7]’s axiomatized CSL

for C++ and its proof automation infrastructure, we have

verified a sequentially-consistent version of NOVA’s C++

code for the ctrl_sm (“control semaphore”) hypercall as well

as several lower-level modules used in NOVA.

1



PriSC’24, January 20, 2024, London, UK Hoang-Hai Dang, David Swasey, and Gregory Malecha

Local and precise logically-atomic specifications Our

NOVA specifications are designed to precisely capture NOVA’s
state at every visible linearization point. For example, the

following specifies steps in the ctrl_sm hypercall to wake

up (UP) a semaphore sm.

⟨𝑐. sm cap↦−−→ 𝑐 |

(). sm cap↦−−→ 𝑐 ⇛

if UP ∉ 𝑐 then BAD_CAP

else ⟨𝑛. sm val↦−−→ 𝑛 |
𝑛′ . sm val↦−−→ 𝑛′ ⇛ 𝛷 (𝑛′) ∗ . . .⟩⟩

Each pair of angle brackets (⟨𝑥 . 𝑃 | 𝑦. 𝑄 ⇛ 𝛷⟩ ) specifies the
logically-atomic effects of a linearization point, where 𝑃 is

the atomic precondition right before, and 𝑄 the atomic post-

condition right after the linearization point. In this example

(to UP an sm), there are two visible linearization points, one

to check the capability (which requires the resource sm cap↦−−→ 𝑐

as the precondition), and one to update the sm’s counter

(which requires the resource sm val↦−−→ 𝑛). We have found that

the small-footprint specifications enabled by separation logic

are quite modular from other hypercalls specifications and

even the NOVA state that backs unrelated kernel objects.

Consequently, we have been able to adapt the specifications,

and even the proof, of logically separated pieces while other

portions of the NOVA implementation have changed.

Most importantly, the specifications aim to capture pre-

cisely all possible visible interferences that can happen during

a hypercall, including both those from trusted code and those

from untrusted code. While this complicates the specifica-

tions, it is easy to derive simpler specifications that can be

used by trusted-code applications on top of these. The bene-

fit of these precise specifications is that they should enable

us to prove properties that concern untrusted user code.

Specifying the Behavior of User Code To describe the

behavior of (potentially untrusted) user code running con-

currently atop NOVA, we use a small step, operational model

based on the processor models developed in SAIL [1]. This

operational model of a core interacts with the rest of the sys-

tem, e.g. memory, hypercalls, and priviledged state, through

events. To embed this into separation logic, we describe

the semantics of a NOVA execution context (similar to a

thread) as a weakest precondition where the user events are

“handled” in separation logic. For example, when the user

model emits a syscall event, we extract the register state in
separation logic and dispatch to the appropriate hypercall

specification such as the one for ctrl_sm presented above.

Similar handling occurs for memory accesses where we de-

scribe the 2nd stage address translation using the abstract

state of the page tables that are exposed as NOVA state.

We conjecture that, if we can prove a wp_nova_cpu for

every user thread in our whole machine configuration,
2
we

should be able to extract strong properties (such as robust

2
Our model also exposes a weakest precondition for devices which must

also be proven.

safety) for the whole machine. Note that since the specifi-

cation are all written in the same separation logic, we can

combine the machine and NOVA resources with invariants

and custom, higher-order ghost state for these proofs.

An intensional approach to Robust Safety The usual

approach to verifying robust safety [2, 4, 8, 12] is to clas-

sify security-relevant state into low- vs. high-integrity state,

and to attach a protocol to the low-integrity state; then, one

proves that all machine steps are compatible with those pro-

tocols for low-integrity state (i.e, given only low-integrity

state, untrusted code can take any step available to it).

By exposing NOVA’s states as aforementioned specifica-

tions without any security-awareness but with precise func-

tional correctness, we leave the client of NOVA interface

the choice to define custom protocols/abstractions for low-

integrity state and to derive simple specifications for working

with these abstractions. Then, by proving wp_nova_cpu for

all possible user-code programs while maintaining the low-

integrity protocols, the client should eventually be able to

show a robust safety metatheorem.

4 Open Challenges and Next Steps
Verifying NOVA’s C++ code against precise, modular speci-

fications is only part of a much bigger effort. By refining the

challenges unique to a microkernel (as provided in §1), we

identify the following more concrete challenges:

(A) Develop concurrent separation logics for the languages

used by NOVA and its applications. These include log-

ics for C++ as well as assembly languages running in

both user and privileged modes.

(B) Specify and verify the interfaces between these logics,

so that we can move back and forth between C++ and

assembly, in both user and privileged modes, as needed

in the dotted arrows in Figure 1. Promising work exists

in this direction in Melocoton [5].

(C) Develop the separation logic interfaces for NOVA,

which include small-footprint resources for NOVA’s

kernel objects and states as well as logically atomic

specifications for accessing and updating those re-

sources. These logically atomic specifications encode

the functional correctness of NOVA, including the ca-

pability checking and each hypercall’s function.

(D) Verify NOVA implementation, modularly by each hy-

percall, against the specifications in (C). The verifica-

tion should be done using C++ privileged-mode logic

from (A), and then connect to the ISA specifications

(C) using the cross-language interfaces in (B).

(E) Derive security properties, such as robust safety and

isolation, from the ISA semantics and NOVA’s func-

tional correctness specifications. Verifications of user

applications contribute to this task.

In this talk, we report our on-going efforts and results in

(C) and (D).

2



Towards Modular Hypervisor Verification PriSC’24, January 20, 2024, London, UK

References
[1] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Shaked Flur,

Kathryn E. Gray, Prashanth Mundkur, Robert M. Norton, Christopher

Pulte, Alastair Reid, Peter Sewell, Ian Stark, and Mark Wassell. 2018.

Detailed Models of Instruction Set Architectures: From Pseudocode

to Formal Semantics. In Proc. Automated Reasoning Workshop. 23–24.
Two-page abstract.

[2] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.

Gordon, and Sergio Maffeis. 2011. Refinement Types for Secure Im-

plementations. ACM Trans. Program. Lang. Syst. 33, 2, Article 8 (feb
2011), 45 pages. https://doi.org/10.1145/1890028.1890031

[3] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.

2014. TaDA: A Logic for Time and Data Abstraction. In ECOOP 2014
- Object-Oriented Programming - 28th European Conference, Uppsala,
Sweden, July 28 - August 1, 2014. Proceedings (Lecture Notes in Com-
puter Science), Vol. 8586. Springer, 207–231. https://doi.org/10.1007/
978-3-662-44202-9_9

[4] Andrew D. Gordon and Alan Jeffrey. 2001. Authenticity by Typing

for Security Protocols. In 14th IEEE Computer Security Foundations
Workshop (CSFW-14 2001), 11-13 June 2001, Cape Breton, Nova Scotia,
Canada. IEEE Computer Society, 145–159. https://doi.org/10.1109/
CSFW.2001.930143

[5] Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler,

Lars Birkedal, and Derek Dreyer. 2023. Melocoton: A Program Logic for

Verified Interoperability Between OCaml and C. Proc. ACM Program.
Lang. 7, OOPSLA2, Article 247 (oct 2023), 29 pages. https://doi.org/10.
1145/3622823

[6] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015. ACM, 637–650. https://doi.org/10.1145/2676726.2676980

[7] Gregory Malecha, Abhishek Anand, and Gordon Stewart. 2020. To-

wards an Axomatic Basis for C++. In The 11th Coq Workshop.
[8] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020.

The high-level benefits of low-level sandboxing. Proc. ACM Program.
Lang. 4, POPL (2020), 32:1–32:32. https://doi.org/10.1145/3371100

[9] Udo Steinberg. 2023. NOVA Microhypervisor: Feature Update, Talk at

FOSDEM 2023.

[10] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-

Based Secure Virtualization Architecture. In Proceedings of the 5th
European Conference on Computer Systems (EuroSys ’10). Association
for Computing Machinery, New York, NY, USA, 209–222. https://doi.
org/10.1145/1755913.1755935

[11] Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent

Abstract Predicates. In Programming Languages and Systems - 23rd
European Symposium on Programming, ESOP 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture Notes in
Computer Science), Vol. 8410. Springer, 149–168. https://doi.org/10.
1007/978-3-642-54833-8_9

[12] David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and

compositional verification of object capability patterns. Proc. ACM
Program. Lang. 1, OOPSLA (2017), 89:1–89:26. https://doi.org/10.1145/
3133913

3

https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1109/CSFW.2001.930143
https://doi.org/10.1109/CSFW.2001.930143
https://doi.org/10.1145/3622823
https://doi.org/10.1145/3622823
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3371100
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3133913

	1 Introduction
	2 A Hypercall's Path through NOVA
	3 Specify and Verify NOVA
	4 Open Challenges and Next Steps
	References

