BEDROCK
Systems Inc

Towards Modular Specification and
Verification of Concurrent
Hypervisor-based Isolation

Hoang-Hai Dang, David Swasey, Gregory Malecha

BedRock Systems Inc.

The BedRock
Stack

e Microkernel-based systems The VMM from the previous talk is
stack. one of several userspace application.

Master Customer
VM M UMX Services
Ctrl (unverified)

N [OAV/2N
Physical Hardware

e Provides virtualization
functionality.

e Kernel security monitors can
introspect running guests. vSwitch

o Monitoring

o Protection
o Remediation

NOVA

Big Ambitious Goal

Verify the stack against a strong
user-space specification. E.g.
"bare metal property".

BEDROCK The future is built on BedRock.

Systems Inc

The NOVA
Microkernel

BEDROCK

Capability-based API
supporting dynamic object
creation.

Provides low-level

mechanisms for working with
system resources, e.g. virtual
memory, interrupts, etc. vSwitch

Communication using
semaphores, IPC, and shared

Customer

unverified)

memory.

Exposes both host threads

Physical Hardware

and "virtual CPUs" (for
hardware virtualization)

User threads are completely
untrusted.

Systems Inc

The future is built on BedRock.

NOVA

Microkernel owns minimum, security-relevant

resources

user-owned
pkernel-owned
security-irrelevant communication / memory memory interrupt device
Events instructions scheduling config access config/delivery config
i CPUAPI - MemdryAP| — InterriptAPI — Device API
KemelAPT | AR g T PAPY i InomiptARI i Pevi AP
! | I 1 1 1
| | e e e .
Ring 1 T o | | ’
: . | L Device 1 Device 2
Ring 0 i Memory i i Interrupt SMMU /
Ring -1 ---- " | Controller | i Controllers IOMMU
CPU o
Kernel Memory User Memory
BEDROCK

Systems Inc

NOVA exposes kernel objects and hypercalls and exposes

HW-assisted virtualization

PD: protection domain with capabilities in Object spaces user-owned
EC: execution contexts Memory spaces SM: semaphores DMA spaces pkernel-owned
SC: scheduling contexts
PT: portals
security-irrelevant communication / memory memory interrupt device
Events instructions scheduling config access config/delivery config
ctrl_ec,ipc_call , . . L . |
! ctrl_sc::gg_f:my ctrl_pd: : afjrllgns ?Tl]nt: aSS|gn_dev:
. ctrlptt ... TR U T L
E CPUAPI - Memory AP ~ Interrupt APl — Device AP
KemelAPI | . = - co e APt i fntem A I
| | | Mwassstd G O
! | ! ! virtualization, ! ! v !
] I EEEEEEEEEE i 1 translation with | | ' !
Rlng 1 i ' ' | page tables ! ' L
| : | | . .
1 L___J | 1 1 DeVICe 1 DGVlCG 2
Ring O 5 Memory ; ; Interrupt SMMU /
Ring -1 ---- " | Controller | i Controllers IOMMU
CPU o
Kernel Memory User Memory
BEDROCK The future is built on BedRock.

Systems Inc

Rich Userspace specs and proofs

Outline

[Part 4. Robust applications. J

and application proofs. (verified and untrusted code) from the specification.

<
[Part 2. Idiomatic specifications :> Hybrid Clients <:| [Part 3. Prove robust safety }

J/

System Verification Robust Safety
(whole-system proofs) (safe against arbitrary clients)

Strong specification allows
reasoning about the
implementation only once. Strong Specification

5 . .

(Separation Logic) Separation logic makes
expressing independence easy.
G

(C++ & ASM)

Physical Hardware

[Part 1. NOVA proof against

NOVA Implementation
a "precise" specification. }

BEDROCK

Systems Inc

Fair
Semaphores w/
Timeouts

State - reflected as separation logic
resources

e Avalue (N)

sm.value gn

e A queue of blocked ECs

sm.queue g Is

4.4.5 Control Semaphore

Parameters:

status = ctrl.sm (SELgg sm,

Flags:

// Semaphore

UINT ticks); // Deadline Timeout

[oJeofz][np]

Description:
Prior to the hypercall:

e If D=0 (Up): { PDcuprenr, SELgp; sm) must refer to a SM Object Capability (CAPos,,) with
permission CTRLyp.

e If D=1 (Down): { PDcymgenr, SELggy sm) must refer to a SM Object Capability (CAPgg),,) with
permission CTRLpy.

If the hypercall completed successfully:
o If D=0 (Up): if there were ECs blocked on the semaphore, then the microhypervisor has released one
of those blocked ECs. Otherwise, the microhypervisor has incremented the semaphore counter. The
deadline timeout value and the Z-flag were ignored.

e If D=1 (Down):

if the semaphore counter was larger than zero, then the microhypervisor has

decremented the semaphore counter (Z=0) or set it to zero (Z=1). Otherwise, the microhypervisor has
blocked ECcypgpexr on the semaphore. If the deadline timeout value was non-zero, ECcygaent unblocks
with a timeout status when the architectural timer reaches or exceeds the specified ticks value.

Blocking and releasing of ECs on a semaphore uses the FIFO gueueing discipline.

tus:

BEDROCK

Systems Inc

Implement a FIFO
discipline to get fairness

SUCCESS
e The hypercall completed suceessfully.
TIMEOUT

The future is built on

o If D=1: Down opération aborted when the timeout triggered.
OVRFLOW

o If D=0: Up operation aborted because the semaphore counter would overflow.

BAD_CAP

® | PDameent, SELosy sm) did not refer to a SM Object Capability (CAPgs).,) or that capability

had insufficient permissions.
BAD_CPU

o If D=1 on an interrupt semaphore: Attempt to wait for the interrupt on a different CPU than the CPU

to which that interrupt has been routed via assign_int.

Specifying
Hypercalls

4.4.5 Control Semaphore

Parameters:
status = ctrl_sm (SELyp; sm, // Semaphore
UINT ticks); // Deadline Timeout
Flags:

[oJeofz][np]

Descriotion:

Atomic steps, e.g.

sm.incr g Q :=
AU << 33 v,

Mnova, T

sm.value g v >> @

\ << sm.value g (v + 1) ,

) must refer to a SM Object Capability (CAPgg).,) with

} must refer to a SM Object Capability (CAPgg),,) with

C O M M Q S>> h the semaphore, then the microhypervisor has released one
icrohypervisor has incremented the semaphore counter. The

letI* g :=
sm.incr g Q

= wp_hypercall ec ctrl_sm(0, sel, _) Q

letI* g
letI* sm_wait g ec in
sm. acqulre z g ec Q
/\ sm.timeout time g ec Q

= wp_hypercall ec ctrl_sm(0, sel,

NOVA
choice.

resolve_sm ec.pd {UP} sel Q in

resolve_sm ec.pd {DN} sel Q in

z, time) Q

value and the Z-flag were ignored.

|f the sunuphorc counter was luger lhdn zero, then the microhypervisor has
z 2 erwise, the microhypervisor has

non-zero, ECqygreyr unblocks

specified ticks value.

Hypercalls expressed W|th
"big-step" predicate transformers
using atomic updates from Iris.

il completed successfully.

line.

Separation logic is the
specification language.

Id overflow.

SELgg; sm) did not refer to a SM Object Capability (CAPgg).,) or that capability
ent permissions.

BEDROCK

Systems Inc

v o=r0n an interrupt semaphore: Attempt to wait for the interrupt on a different CPU than the CPU
to which that interrupt has been routed via assign_int.

4.4.5 Control Semaphore

Parameters:

status = ctrl sm (SELgg sm, // Semaphore

SpeCifyi ng i UINE - ticks)y // Deadline Timeout
Hypercalls

[oJeofz][np]
3 2 1 o

Atomic steps, e.g.
sm.incr g Qs

efer to a SM Object Capability (CAPgg).,) with

fer to a SM Object Capability (CAPgg),,) with

aphore, then the mierohypervisor has released one
rvisor has incremented the semaphore counter. The

letI* g := resqg
sm.incr g Q
= wp_hypercall

ter was llrger lhan zero, then the microhypervisor has
S erwise, the microhypervisor has

non-zero, ECqygreyr unblocks

specified ticks value.

line.

cate transformers
ic updates from Iris.

Il completed successfully.

letI* g := reso
letI* sm_wait g ec 1n Separation logic is the

sm. acqu1 re z g ec Q Speciﬂcation |anguage_ Id overflow.
/\ sm.timeout time g ec Q — , , g N
SELgg; sm) did not refer to a SM Object Capability (CAPgg).,) or that capability

= wp_hypercall ec ctrl_sm(@, sel, z, time) Q eur permissions.

NOVA
choice.

v o=T0n an interrupt semaphore: Attempt to wait for the interrupt on a different CPU than the CPU

BEDROCK . . to which that interrupt has been routed via assign_int.

The future is built on
Systems Inc

The NOVA Event Handler

-

(V evt regs',
match evt with

None => wp_nova_ec regs'

Some syscall => wp_hypercall ec syscall

Some (mem

end)
-~ wp_nova_ec ec regs.

User & kernel small step semantics
Theorem wp_nova_ec_intro : V ec regsLﬂfgfﬂﬂfN”

|

[| cpu.step regs evt regs' |] -*

.) => wp_mem

Address translation and memory access
(2nd stage page tables managed by NOVA,
reflected in separation logic state)

BEDROCK

Systems Inc

Starting NOVA (Simplified)

[Parametric over any startup program. J

: 7 mm—
vV startup_image,

(V root_pd root_ec root_sc,
pd.mem root_pd startup_image -*

initial_pd state root_pd root_ec root_sc -*

memory -* .. -*
wp_nova_ec root_ec (startup_regs

= NOVA_loaded -*

)

memory -*
—%*

elf startup_image -* <[

Raw machine resources.
Given to NOVA by the bootloader.

|

wp_arm_el?2 boot_regs

|

Behavior of the boot CPU expressed
as a weakest-precondition.

BEDROCK

Systems Inc

} [The "program" is the register state.]

Starting NOVA (Simplified)

: (NOVA resources.
v SEErtlp _Lmage. LGiven to userspace by NOVA.
(V root_pd root_ec root_sc,
pd.mem root_pd startup_image -* Jk
Weakest initial_pd state root_pd root_ec root_sc -*
precondition memory -* .. -*
for the root EC. wp_nova_ec root_ec (startup_regs ..))

~ NOVA_loaded -*
elf startup_image -*

memory -*
—%*

wp_arm_el?2 boot_regs

BEDROCK

Systems Inc

Rich Userspace specs and proofs

Outline

[Part 4. Robust applications. J

and application proofs. (verified and untrusted code) from the specification.

<
[Part 2. Idiomatic specifications :> Hybrid Clients <:| [Part 3. Prove robust safety }

J/

System Verification Robust Safety

(whole-system proofs) (safe against arbitrary clients)

Strong specification allows
reasoning about the
implementation only once. Strong Specification

4 (Separation Logic)

(C++ & ASM)

Physical Hardware

[Part 1. NOVA proof against

NOVA Implementation
a "precise" specification. }

BEDROCK

Systems Inc

System
Refinement

Establish properties for the
applications that run on top of
NOVA.

e Use CaReSL-style techniques to
prove refinement using ghost
state and invariants.

e Extract the end-to-end proof
(independent of SL) using Iris
adequacy.

BEDROCK

Systems Inc

Effectful transitions must
be tied to device 1/0.

7
CaReSL-style operational specification
of the userspace application.

specinit +~ physical_state -* wp_arm boot

Use adequacy to extract a standard
operational refinement proof.

System
Refinement

Establish properties for the
applications that run on top of
NOVA.

e Use CaReSL-style techniques to
prove refinement using ghost

state and invariants. NOVA

nova_state -* elf user.bin -*

e Extract the end -to- end progf/SpeC init - wp_nova_ec
ggggﬁg?g[Framing preserves the J
specification. l nova_ok ﬁ Use the proof of NOVA]
— p .

specinit +~ physical_state -* wp_arm boot
Use adequacy to extract a standard
operational refinement proof.

BEDROCK The future is built on BedRock.

Systems Inc

System
Refinement

Establish properties for the
applications that run on top of

Verify the userspace binary
against spec init.

app_ok

NOVA specinit + c++ prog.init -* wp_cpp prog.main
e Use CaReSL-style techniques to l cpp_ok { Verlfy-lsource code assuming
prove refinement using ghost compiler correctness.

i i e — NOVA
state and invariants. specinit - nova_state -* elf user.bin -*

e Extract the end-to-end proof P wp_nova_ec
(independent of SL) using Iris

adequacy. l nova_ok

specinit +~ physical_state -* wp_arm boot

Use adequacy to extract a standard
operational refinement proof.

BEDROCK

Systems Inc

Rich Userspace specs and proofs

Outline

[Part 4. Robust applications. J

and application proofs. (verified and untrusted code) from the specification.

<
[Part 2. Idiomatic specifications :> Hybrid Clients <:| [Part 3. Prove robust safety }

J/

System Verification Robust Safety

(whole-system proofs) (safe against arbitrary clients)

Strong specification allows
reasoning about the
implementation only once. Strong Specification

4 (Separation Logic)

(C++ & ASM)

Physical Hardware

[Part 1. NOVA proof against

NOVA Implementation
a "precise" specification. }

BEDROCK

Systems Inc

Proving
Robust Safety

Want to show that NOVA is safe for
any userspace code.

BEDROCK

Systems Inc

~

Need to show that this

v startup_image, assumption is trivial.

(V root_pd root_ec root_sc,
pd.mem root_pd startup_image -*
initial_pd state root_pd root_ec root_sc -*
memory -* .. -%*
wp_nova_ec root_ec (startup_regs ..))

= NOVA_loaded -*

elf startup_image -*

memory -%*
_%*

wp_arm_el?2 boot_regs

3 objs, let valid o := o \in objs in rs-inv .

Proving Robust Safety é [*list] o \in objs,
from the Spec i 3 ves, sm.valueyv

. ** sm.queue y ecs ** [| Forall valid es |]
Express the high-low state

distinction within separation logic.
e Invariants allow flexible, : "Low integrity" invariant for semaphores.
concurrent sharing. Ownership exists, values are minimally constrained.
e Existential quantifiers express :

low-integrity
Properties for other

® kernel object types.

** all schedulable ECs are valid

[Over arbitrary user binaries. * all interrupts bound to valid interrupt SMs

Need to Show

Userspace Resources |-- |={T}=> inv rs-inv
inv rs-inv |-- wp_nova_ec boot_ec boot_regs
BEDROCK

Systems Inc

Rich Userspace specs and proofs

Outline

[Part 4. Robust applications. J

<
[Part 2. Idiomatic specifications :> Hybrid Clients <:| [Part 3. Prove robust safety }

and application proofs. (verified and untrusted code) from the specification.

J/

System Verification Robust Safety

(whole-system proofs) (safe against arbitrary clients)

\

Strong Specification
(Separation Logic)

(C++ & ASM)

Physical Hardware

[Part 1. NOVA proof against

NOVA Implementation
a "precise" specification. }

BEDROCK

Systems Inc

Entire data lifecycle is provable

Support a "data life cycle". using the strong specification.

1. Create state. (high)

2. Configure state. (high)
3. Share permissions with untrusted code? (low)
4. Revoke state. (high)
5

Userspace
Robust Safety

State may change integrity levels Destroy state. (high) Can share limited permissions,

throughout the execution of the e.g. only up a semaphore, only call
program. a portal, only read a page, etc.

e High integrity state shared
with untrusted code.

° Low integrity state revoked Share resources with verified code. Create resources, pass to
from untrusted code. Requires strong specification. untrusted code, revoke resources
from untrusted code.

Revocation is generally difficult and
requires tight reasoning about
confinement and visibility.

vSwitch VeSSt Unverifed
Precise specifications support
endorsement (low -> high) because NOVA
they decouple state from policy.
——_
Provide mechanisms (assertions), Physical Hardware
not policies (invariants, quantifiers). }

BEDROCK The future is built on BedRock.

Systems Inc

Rich Userspace specs and proofs

Outline

[Part 4. Robust applications. J

and application proofs. (verified and untrusted code) from the specification.

<
[Part 2. Idiomatic specifications :> Hybrid Clients <:| [Part 3. Prove robust safety }

J/

System Verification Robust Safety
(whole-system proofs) (safe against arbitrary clients)

Strong specification allows
reasoning about the
implementation only once. Strong Specification

5 . .

(Separation Logic) Separation logic makes
expressing independence easy.
G

(C++ & ASM)

Physical Hardware

[Part 1. NOVA proof against

NOVA Implementation
a "precise" specification. }

BEDROCK

Systems Inc

