
Towards Modular Specification and
Verification of Concurrent
Hypervisor-based Isolation

Hoang-Hai Dang, David Swasey, Gregory Malecha
BedRock Systems Inc.

The future is built on BedRock.

The BedRock
Stack

VMMVMM
Platform
Manager

Platform
ManagerUMX

NOVA

VMM
Customer
Services

(unverified)

Master
CtrlvSwitch

Physical Hardware

NOVA

● Microkernel-based systems
stack.

● Provides virtualization
functionality.

● Kernel security monitors can
introspect running guests.

○ Monitoring
○ Protection
○ Remediation

Big Ambitious Goal

Verify the stack against a strong
user-space specification. E.g.
"bare metal property".

The VMM from the previous talk is
one of several userspace application.

The future is built on BedRock.

The NOVA
Microkernel

VMMVMM
Platform
Manager

Platform
ManagerUMX

NOVA

VMM
Customer
Services

(unverified)

Master
CtrlvSwitch

Physical Hardware

NOVA

● Capability-based API
supporting dynamic object
creation.

● Provides low-level
mechanisms for working with
system resources, e.g. virtual
memory, interrupts, etc.

● Communication using
semaphores, IPC, and shared
memory.

● Exposes both host threads
and "virtual CPUs" (for
hardware virtualization)

● User threads are completely
untrusted.

The focus of this talk.

The future is built on BedRock.

Microkernel owns minimum, security-relevant
resources

User Memory

Interrupt
Controllers

SMMU /
IOMMU

Device 1 Device 2
Memory

Controller

Ring 1
Ring 0
Ring -1

Kernel Memory
CPU

Kernel API CPU API Memory API Interrupt API Device API

security-irrelevant
instructions

memory
config

memory
access

interrupt
config/delivery

device
configEvents

communication /
scheduling

user-owned

μkernel-owned

The future is built on BedRock.

User Memory

Interrupt
Controllers

SMMU /
IOMMU

Device 1 Device 2
Memory

Controller

Ring 1
Ring 0
Ring -1

Kernel Memory
CPU

Kernel API CPU API Memory API Interrupt API Device API

security-irrelevant
instructions

memory
config

memory
access

interrupt
config/delivery

device
configEvents

communication /
scheduling

NOVA exposes kernel objects and hypercalls and exposes
HW-assisted virtualization

EC: execution contexts
SC: scheduling contexts
PT: portals

PD: protection domain with capabilities in Object spaces

SM: semaphoresMemory spaces DMA spaces

assign_int
ctrl_sm

assign_devctrl_pdctrl_ec
ctrl_sc
ctrl_pt

ipc_call
ipc_reply

HW-assisted
virtualization,
translation with
page tables

user-owned

μkernel-owned

The future is built on BedRock.

Rich Userspace specs and proofs
Outline

"Direct" robust safety proof
verifies the implementation
against a particular security

policy.

Difficult to change policy over
time or have different,

concurrent users using different
security policies. E.g. verified

code and unverified code
running concurrently.

Strong Specification
(Separation Logic)

System Verification
(whole-system proofs)

Robust Safety
(safe against arbitrary clients)

Hybrid Clients
(verified and untrusted code)

Physical Hardware

NOVA Implementation
(C++ & ASM)Part 1. NOVA proof against

a "precise" specification.

Strong specification allows
reasoning about the
implementation only once.

Part 4. Robust applications.

Part 2. Idiomatic specifications
and application proofs.

Part 3. Prove robust safety
from the specification.

Separation logic makes
expressing independence easy.

The future is built on BedRock.

Fair
Semaphores w/
Timeouts
State – reflected as separation logic
resources

● A value (N)

● A queue of blocked ECs

sm.value g n

sm.queue g ls Implement a FIFO
discipline to get fairness
Implement a FIFO
discipline to get fairness

The future is built on BedRock.

Specifying
Hypercalls

 letI* g := resolve_sm ec.pd {UP} sel Q in
 sm.incr g Q
⊢ wp_hypercall ec ctrl_sm(0, sel, _) Q

 letI* g := resolve_sm ec.pd {DN} sel Q in
 letI* _ := sm_wait g ec in
 sm.acquire z g ec Q
 /\ sm.timeout time g ec Q
⊢ wp_hypercall ec ctrl_sm(0, sel, z, time) Q

Atomic steps, e.g.
sm.incr g Q :=
 AU << ∃∃ v, sm.value g v >> @
Mnova,T
 << sm.value g (v + 1) , COMM Q >>

NOVA
choice.

Separation logic is the
specification language.

Hypercalls expressed with
"big-step" predicate transformers
using atomic updates from Iris.

The future is built on BedRock.

Specifying
Hypercalls

 letI* g := resolve_sm ec.pd {UP} sel Q in
 sm.incr g Q
⊢ wp_hypercall ec ctrl_sm(0, sel, _) Q

 letI* g := resolve_sm ec.pd {DN} sel Q in
 letI* _ := sm_wait g ec in
 sm.acquire z g ec Q
 /\ sm.timeout time g ec Q
⊢ wp_hypercall ec ctrl_sm(0, sel, z, time) Q

Atomic steps, e.g.
sm.incr g Q :=
 AU << ∃∃ v, sm.value g v >> @
Mnova,T
 << sm.value g (v + 1) , COMM Q >>

NOVA
choice.

Separation logic is the
specification language.

Hypercalls expressed with
"big-step" predicate transformers
using atomic updates from Iris.

Proved

The future is built on BedRock.

The NOVA Event Handler
Simplified
Theorem wp_nova_ec_intro : ∀ ec regs,
 (∀ evt regs', [| cpu.step regs evt regs' |] -*
 match evt with
 | None => wp_nova_ec regs'
 | Some syscall => wp_hypercall ec syscall ..
 | Some (mem ..) => wp_mem ..
 | ...
 end)
 ⊢ wp_nova_ec ec regs.

Address translation and memory access
(2nd stage page tables managed by NOVA,
reflected in separation logic state)

User & kernel small step semantics
(inspired by SAIL)

The future is built on BedRock.

Starting NOVA (Simplified)
Input

∀ startup_image,
 (∀ root_pd root_ec root_sc,
 pd.mem root_pd startup_image -*
 initial_pd state root_pd root_ec root_sc -*
 memory -* … -*
 wp_nova_ec root_ec (startup_regs …))
⊢ NOVA_loaded -*
 elf startup_image -*
 memory -*
 … -*
 wp_arm_el2 boot_regs

Raw machine resources.
Given to NOVA by the bootloader.

Behavior of the boot CPU expressed
as a weakest-precondition.

The "program" is the register state.

Parametric over any startup program.

The future is built on BedRock.

∀ startup_image,
 (∀ root_pd root_ec root_sc,
 pd.mem root_pd startup_image -*
 initial_pd state root_pd root_ec root_sc -*
 memory -* … -*
 wp_nova_ec root_ec (startup_regs …))
⊢ NOVA_loaded -*
 elf startup_image -*
 memory -*
 … -*
 wp_arm_el2 boot_regs

Weakest
precondition
for the root EC.

NOVA resources.
Given to userspace by NOVA.

Starting NOVA (Simplified)
Userspace

The future is built on BedRock.

Rich Userspace specs and proofs
Outline

"Direct" robust safety proof
verifies the implementation
against a particular security

policy.

Difficult to change policy over
time or have different,

concurrent users using different
security policies. E.g. verified

code and unverified code
running concurrently.

Strong Specification
(Separation Logic)

System Verification
(whole-system proofs)

Robust Safety
(safe against arbitrary clients)

Hybrid Clients
(verified and untrusted code)

Physical Hardware

NOVA Implementation
(C++ & ASM)Part 1. NOVA proof against

a "precise" specification.

Strong specification allows
reasoning about the
implementation only once.

Part 4. Robust applications.

Part 2. Idiomatic specifications
and application proofs.

Part 3. Prove robust safety
from the specification.

The future is built on BedRock.

Establish properties for the
applications that run on top of
NOVA.

● Use CaReSL-style techniques to
prove refinement using ghost
state and invariants.

● Extract the end-to-end proof
(independent of SL) using Iris
adequacy.

If you want a operational
specification of only NOVA, you can
instantiate spec init with an
appropriate model.

spec init ⊢ c++ prog.init -* wp_cpp prog.main

spec init ⊢
nova_state -* elf (C prog) -*
wp_nova_ec ...

spec init ⊢ physical_state -* wp_arm boot

System
Refinement

Use adequacy to extract a standard
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

CaReSL-style operational specification
of the userspace application.

Effectful transitions must
be tied to device I/O.

The future is built on BedRock.

Establish properties for the
applications that run on top of
NOVA.

● Use CaReSL-style techniques to
prove refinement using ghost
state and invariants.

● Extract the end-to-end proof
(independent of SL) using Iris
adequacy.

If you want a operational
specification of only NOVA, you can
instantiate spec init with an
appropriate model.

spec init ⊢ c++ prog.init -* wp_cpp prog.main

spec init ⊢
nova_state -* elf user.bin -*
wp_nova_ec ...

spec init ⊢ physical_state -* wp_arm boot

System
Refinement

Use adequacy to extract a standard
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

Use the proof of NOVA.
Framing preserves the
specification.
Framing preserves the
specification.

The future is built on BedRock.

Establish properties for the
applications that run on top of
NOVA.

● Use CaReSL-style techniques to
prove refinement using ghost
state and invariants.

● Extract the end-to-end proof
(independent of SL) using Iris
adequacy.

If you want a operational
specification of only NOVA, you can
instantiate spec init with an
appropriate model.

spec init ⊢ c++ prog.init -* wp_cpp prog.main

spec init ⊢
nova_state -* elf user.bin -*
wp_nova_ec ...

spec init ⊢ physical_state -* wp_arm boot

System
Refinement

Use adequacy to extract a standard
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

Verify the userspace binary
against spec init.

Verify source code assuming
compiler correctness.

The future is built on BedRock.

Rich Userspace specs and proofs
Outline

"Direct" robust safety proof
verifies the implementation
against a particular security

policy.

Difficult to change policy over
time or have different,

concurrent users using different
security policies. E.g. verified

code and unverified code
running concurrently.

Strong Specification
(Separation Logic)

System Verification
(whole-system proofs)

Robust Safety
(safe against arbitrary clients)

Hybrid Clients
(verified and untrusted code)

Physical Hardware

NOVA Implementation
(C++ & ASM)Part 1. NOVA proof against

a "precise" specification.

Strong specification allows
reasoning about the
implementation only once.

Part 4. Robust applications.

Part 2. Idiomatic specifications
and application proofs.

Part 3. Prove robust safety
from the specification.

The future is built on BedRock.

Proving
Robust Safety

∀ startup_image,
 (∀ root_pd root_ec root_sc,
 pd.mem root_pd startup_image -*
 initial_pd state root_pd root_ec root_sc -*
 memory -* … -*
 wp_nova_ec root_ec (startup_regs …))
⊢ NOVA_loaded -*
 elf startup_image -*
 memory -*
 … -*
 wp_arm_el2 boot_regs

Need to show that this
assumption is trivial.Want to show that NOVA is safe for

any userspace code.

The future is built on BedRock.

Proving Robust Safety
from the Spec
Express the high-low state
distinction within separation logic.

● Invariants allow flexible,
concurrent sharing.

● Existential quantifiers express
low-integrity

rs-inv∃ objs, let valid o := o \in objs in
 [*list] o \in objs,

** all schedulable ECs are valid
** all interrupts bound to valid interrupt SMs

Need to Show
Userspace Resources |-- |={T}=> inv rs-inv
inv rs-inv |-- wp_nova_ec boot_ec boot_regs

∃ v es, sm.value ɣ v
 ** sm.queue ɣ ecs ** [| Forall valid es |]

…
Properties for other
kernel object types.

"Low integrity" invariant for semaphores.
Ownership exists, values are minimally constrained.

Over arbitrary user binaries.

The future is built on BedRock.

Rich Userspace specs and proofs
Outline

"Direct" robust safety proof
verifies the implementation
against a particular security

policy.

Difficult to change policy over
time or have different,

concurrent users using different
security policies. E.g. verified

code and unverified code
running concurrently.

Strong Specification
(Separation Logic)

System Verification
(whole-system proofs)

Robust Safety
(safe against arbitrary clients)

Hybrid Clients
(verified and untrusted code)

Physical Hardware

NOVA Implementation
(C++ & ASM)Part 1. NOVA proof against

a "precise" specification.

Part 4. Robust applications.

Part 2. Idiomatic specifications
and application proofs.

Part 3. Prove robust safety
from the specification.

The future is built on BedRock.

Userspace
Robust Safety
State may change integrity levels
throughout the execution of the
program.

● High integrity state shared
with untrusted code.

● Low integrity state revoked
from untrusted code.

Revocation is generally difficult and
requires tight reasoning about
confinement and visibility. VMMVMM

NOVA

VMM Unverified
Code

Master
CtrlvSwitch

Physical Hardware

NOVA

Create resources, pass to
untrusted code, revoke resources
from untrusted code.

Share resources with verified code.
Requires strong specification.

Support a "data life cycle".
1. Create state. (high)
2. Configure state. (high)
3. Share permissions with untrusted code? (low)
4. Revoke state. (high)
5. Destroy state. (high)

Precise specifications support
endorsement (low -> high) because

they decouple state from policy.

Provide mechanisms (assertions),
not policies (invariants, quantifiers).

Can share limited permissions,
e.g. only up a semaphore, only call
a portal, only read a page, etc.

Entire data lifecycle is provable
using the strong specification.

The future is built on BedRock.

Rich Userspace specs and proofs
Outline

"Direct" robust safety proof
verifies the implementation
against a particular security

policy.

Difficult to change policy over
time or have different,

concurrent users using different
security policies. E.g. verified

code and unverified code
running concurrently.

Strong Specification
(Separation Logic)

System Verification
(whole-system proofs)

Robust Safety
(safe against arbitrary clients)

Hybrid Clients
(verified and untrusted code)

Physical Hardware

NOVA Implementation
(C++ & ASM)Part 1. NOVA proof against

a "precise" specification.

Strong specification allows
reasoning about the
implementation only once.

Part 4. Robust applications.

Part 2. Idiomatic specifications
and application proofs.

Part 3. Prove robust safety
from the specification.

Separation logic makes
expressing independence easy.

