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The future is built on BedRock.

The BedRock 
Stack
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NOVA

● Microkernel-based systems 
stack.

● Provides virtualization 
functionality.

● Kernel security monitors can 
introspect running guests.

○ Monitoring
○ Protection
○ Remediation

Big Ambitious Goal

Verify the stack against a strong 
user-space specification. E.g. 
"bare metal property".

The VMM from the previous talk is
one of several userspace application.
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The NOVA 
Microkernel
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NOVA

● Capability-based API 
supporting dynamic object 
creation.

● Provides low-level 
mechanisms for working with 
system resources, e.g. virtual 
memory, interrupts, etc.

● Communication using 
semaphores, IPC, and shared 
memory.

● Exposes both host threads 
and "virtual CPUs" (for 
hardware virtualization)

● User threads are completely 
untrusted.

The focus of this talk.
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Microkernel owns minimum, security-relevant 
resources

User Memory

Interrupt 
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user-owned

μkernel-owned
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User Memory
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Controllers
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Kernel Memory
CPU
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NOVA exposes kernel objects and hypercalls and exposes 
HW-assisted virtualization

EC: execution contexts
SC: scheduling contexts
PT: portals

PD: protection domain with capabilities in Object spaces

SM: semaphoresMemory spaces DMA spaces

assign_int
ctrl_sm

assign_devctrl_pdctrl_ec
ctrl_sc
ctrl_pt

ipc_call
ipc_reply

HW-assisted
virtualization,
translation with 
page tables

user-owned

μkernel-owned



The future is built on BedRock.

Rich Userspace specs and proofs
Outline

"Direct" robust safety proof 
verifies the implementation 
against a particular security 

policy.

Difficult to change policy over 
time or have different, 

concurrent users using different 
security policies. E.g. verified 

code and unverified code 
running concurrently.

Strong Specification
(Separation Logic)

System Verification
(whole-system proofs)

Robust Safety
(safe against arbitrary clients)

Hybrid Clients
(verified and untrusted code)

Physical Hardware

NOVA Implementation 
(C++ & ASM)Part 1. NOVA proof against 

a "precise" specification.

Strong specification allows 
reasoning about the 
implementation only once.

Part 4. Robust applications.

Part 2. Idiomatic specifications 
and application proofs.

Part 3. Prove robust safety 
from the specification.

Separation logic makes 
expressing independence easy.
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Fair
Semaphores w/ 
Timeouts
State – reflected as separation logic 
resources

● A value (N)

● A queue of blocked ECs

sm.value g n

sm.queue g ls Implement a FIFO 
discipline to get fairness
Implement a FIFO 
discipline to get fairness
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Specifying 
Hypercalls

   letI* g := resolve_sm ec.pd {UP} sel Q in
   sm.incr g Q
⊢ wp_hypercall ec ctrl_sm(0, sel, _) Q

   letI* g := resolve_sm ec.pd {DN} sel Q in
   letI* _ := sm_wait g ec in
      sm.acquire z g ec Q
   /\ sm.timeout time g ec Q
⊢ wp_hypercall ec ctrl_sm(0, sel, z, time) Q

Atomic steps, e.g.
sm.incr g Q :=
  AU << ∃∃ v, sm.value g v >> @ 
Mnova,T
     << sm.value g (v + 1) , COMM Q >>

NOVA 
choice.

Separation logic is the 
specification language.

Hypercalls expressed with 
"big-step" predicate transformers 
using atomic updates from Iris.
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Specifying 
Hypercalls

   letI* g := resolve_sm ec.pd {UP} sel Q in
   sm.incr g Q
⊢ wp_hypercall ec ctrl_sm(0, sel, _) Q

   letI* g := resolve_sm ec.pd {DN} sel Q in
   letI* _ := sm_wait g ec in
      sm.acquire z g ec Q
   /\ sm.timeout time g ec Q
⊢ wp_hypercall ec ctrl_sm(0, sel, z, time) Q

Atomic steps, e.g.
sm.incr g Q :=
  AU << ∃∃ v, sm.value g v >> @ 
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NOVA 
choice.

Separation logic is the 
specification language.

Hypercalls expressed with 
"big-step" predicate transformers 
using atomic updates from Iris.

Proved
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The NOVA Event Handler
Simplified
Theorem wp_nova_ec_intro : ∀ ec regs,
  (∀ evt regs', [| cpu.step regs evt regs' |] -*
    match evt with
    | None => wp_nova_ec regs' 
    | Some syscall => wp_hypercall ec syscall ..
    | Some (mem ..) => wp_mem ..
    | ...
    end)
 ⊢ wp_nova_ec ec regs.

Address translation and memory access
(2nd stage page tables managed by NOVA, 
reflected in separation logic state)

User & kernel small step semantics
(inspired by SAIL)
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Starting NOVA (Simplified)
Input

∀ startup_image,
 (∀ root_pd root_ec root_sc,
    pd.mem root_pd startup_image -*
    initial_pd state root_pd root_ec root_sc -*
    memory -* … -*
    wp_nova_ec root_ec (startup_regs …))
⊢ NOVA_loaded -*
   elf startup_image -*
   memory -*
   … -*
   wp_arm_el2 boot_regs

Raw machine resources.
Given to NOVA by the bootloader.

Behavior of the boot CPU expressed 
as a weakest-precondition.

The "program" is the register state.

Parametric over any startup program.



The future is built on BedRock.

∀ startup_image,
 (∀ root_pd root_ec root_sc,
    pd.mem root_pd startup_image -*
    initial_pd state root_pd root_ec root_sc -*
    memory -* … -*
    wp_nova_ec root_ec (startup_regs …))
⊢ NOVA_loaded -*
   elf startup_image -*
   memory -*
   … -*
   wp_arm_el2 boot_regs

Weakest 
precondition 
for the root EC.

NOVA resources.
Given to userspace by NOVA.

Starting NOVA (Simplified)
Userspace
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Rich Userspace specs and proofs
Outline

"Direct" robust safety proof 
verifies the implementation 
against a particular security 

policy.

Difficult to change policy over 
time or have different, 

concurrent users using different 
security policies. E.g. verified 

code and unverified code 
running concurrently.

Strong Specification
(Separation Logic)

System Verification
(whole-system proofs)

Robust Safety
(safe against arbitrary clients)

Hybrid Clients
(verified and untrusted code)

Physical Hardware

NOVA Implementation 
(C++ & ASM)Part 1. NOVA proof against 

a "precise" specification.

Strong specification allows 
reasoning about the 
implementation only once.

Part 4. Robust applications.

Part 2. Idiomatic specifications 
and application proofs.

Part 3. Prove robust safety 
from the specification.
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Establish properties for the 
applications that run on top of 
NOVA.

● Use CaReSL-style techniques to 
prove refinement using ghost 
state and invariants.

● Extract the end-to-end proof 
(independent of SL) using Iris 
adequacy.

If you want a operational 
specification of only NOVA, you can 
instantiate spec init with an 
appropriate model.

spec init ⊢ c++ prog.init -* wp_cpp prog.main

spec init ⊢
nova_state -* elf (C prog) -*
wp_nova_ec ...

spec init ⊢ physical_state -* wp_arm boot

System 
Refinement

Use adequacy to extract a standard 
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

CaReSL-style operational specification 
of the userspace application.

Effectful transitions must 
be tied to device I/O.
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Establish properties for the 
applications that run on top of 
NOVA.

● Use CaReSL-style techniques to 
prove refinement using ghost 
state and invariants.

● Extract the end-to-end proof 
(independent of SL) using Iris 
adequacy.

If you want a operational 
specification of only NOVA, you can 
instantiate spec init with an 
appropriate model.

spec init ⊢ c++ prog.init -* wp_cpp prog.main

spec init ⊢
nova_state -* elf user.bin -*
wp_nova_ec ...

spec init ⊢ physical_state -* wp_arm boot

System 
Refinement

Use adequacy to extract a standard 
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

Use the proof of NOVA.
Framing preserves the 
specification.
Framing preserves the 
specification.
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Establish properties for the 
applications that run on top of 
NOVA.

● Use CaReSL-style techniques to 
prove refinement using ghost 
state and invariants.

● Extract the end-to-end proof 
(independent of SL) using Iris 
adequacy.

If you want a operational 
specification of only NOVA, you can 
instantiate spec init with an 
appropriate model.

spec init ⊢ c++ prog.init -* wp_cpp prog.main

spec init ⊢
nova_state -* elf user.bin -*
wp_nova_ec ...

spec init ⊢ physical_state -* wp_arm boot

System 
Refinement

Use adequacy to extract a standard 
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

Verify the userspace binary 
against spec init.

Verify source code assuming 
compiler correctness.
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Rich Userspace specs and proofs
Outline

"Direct" robust safety proof 
verifies the implementation 
against a particular security 

policy.

Difficult to change policy over 
time or have different, 

concurrent users using different 
security policies. E.g. verified 

code and unverified code 
running concurrently.

Strong Specification
(Separation Logic)

System Verification
(whole-system proofs)

Robust Safety
(safe against arbitrary clients)

Hybrid Clients
(verified and untrusted code)

Physical Hardware

NOVA Implementation 
(C++ & ASM)Part 1. NOVA proof against 

a "precise" specification.

Strong specification allows 
reasoning about the 
implementation only once.

Part 4. Robust applications.

Part 2. Idiomatic specifications 
and application proofs.

Part 3. Prove robust safety 
from the specification.
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Proving
Robust Safety

∀ startup_image,
 (∀ root_pd root_ec root_sc,
    pd.mem root_pd startup_image -*
    initial_pd state root_pd root_ec root_sc -*
    memory -* … -*
    wp_nova_ec root_ec (startup_regs …))
⊢ NOVA_loaded -*
   elf startup_image -*
   memory -*
   … -*
   wp_arm_el2 boot_regs

Need to show that this 
assumption is trivial.Want to show that NOVA is safe for 

any userspace code.



The future is built on BedRock.

Proving Robust Safety 
from the Spec
Express the high-low state 
distinction within separation logic.

● Invariants allow flexible, 
concurrent sharing.

● Existential quantifiers express 
low-integrity

rs-inv∃ objs, let valid o := o \in objs in
  [*list] o \in objs,

** all schedulable ECs are valid
** all interrupts bound to valid interrupt SMs

Need to Show
Userspace Resources |-- |={T}=> inv rs-inv
inv rs-inv |-- wp_nova_ec boot_ec boot_regs

∃ v es, sm.value ɣ v
  ** sm.queue ɣ ecs ** [| Forall valid es |]

…
Properties for other 
kernel object types.

"Low integrity" invariant for semaphores.
Ownership exists, values are minimally constrained.

Over arbitrary user binaries.
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Userspace
Robust Safety
State may change integrity levels 
throughout the execution of the 
program.

● High integrity state shared 
with untrusted code.

● Low integrity state revoked 
from untrusted code.

Revocation is generally difficult and 
requires tight reasoning about 
confinement and visibility. VMMVMM

NOVA

VMM Unverified 
Code

Master 
CtrlvSwitch

Physical Hardware

NOVA

Create resources, pass to 
untrusted code, revoke resources 
from untrusted code.

Share resources with verified code. 
Requires strong specification.

Support a "data life cycle".
1. Create state. (high)
2. Configure state. (high)
3. Share permissions with untrusted code? (low)
4. Revoke state. (high)
5. Destroy state. (high)

Precise specifications support 
endorsement (low -> high) because 

they decouple state from policy.

Provide mechanisms (assertions), 
not policies (invariants, quantifiers).

Can share limited permissions,
e.g. only up a semaphore, only call 
a portal, only read a page, etc.

Entire data lifecycle is provable 
using the strong specification. 
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