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Building on academic research but with feet firmly
planted in industrial applications, BedRock SystemsTM 
is in the process of building the BedRock HyperVisor 
(BHVTM), a formally verified, highly concurrent, mi-
crokernel-based commercial hypervisor. By for-
mally verified, we mean that the C++ and assem-
bly-code implementation of the operating system 
is proved correct in the Coq proof assistant.1 By 
highly concurrent, we mean that we use, and veri-
fy, lock-free data structures in core parts of the im-
plementation. That the BHV is microkernel based 
means that most of the system runs in user mode 
on top of a small, kernel-level program, which pro-
vides bare-bones abstractions such as address 
spaces and interprocess communication (IPC).

To verify the BHV, BedRock Systems is pioneer-
ing the use of formal methods (FM) at scale. This 
experience report explains how we use FM and 
why. Our experience shows that advances in FM 
techniques finally enable them to integrate well 
in the standard software development process. In 
essence, FM-based software development is “just” 
mathematically rigorous software engineering. 
Additionally, the design aims of FM align with soft-

ware engineering best practices. Further, our ex-
periences suggest that FM techniques are increas-
ingly able to directly address (and in some cases, 
improve upon) current best practices in software 
engineering.

Despite the alignment of aims, the road is not al-
ways an easy one. Pioneering FM at scale means 
that we must build many tools and libraries our-
selves. Although FM tools still lag behind more 
mainstream tools, we believe they have matured 
to the point of being usable in an industrial con-
text. Further, development and adoption of these 
tools is growing, and we anticipate the situation 
will continue to improve.

Beyond the tools themselves, writing verified soft-
ware, even in mainstream languages, still suffers 
from a dearth of libraries. One of the main benefits 
of mature ecosystems such as C++ is the availabil-
ity of libraries, but very few of these libraries are 
formally specified, let alone verified. Our own work 
has already begun to address this problem inter-
nally, and we believe that it is just a matter of time 
before developers are able to use libraries that are 
formally verified. 

The BedRock HyperVisorTM is a commercial, highly concurrent, verified virtualiza-
tion platform that employs formal methods to enable proofs of complex, lock-free 
concurrent code; support automating proofs of large programs; and integrate with 
“informal” parts of the software lifecycle.
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Figure 1. The BHV. Top-level applications 
such as the Virtual Machine Monitor 
(VMM) and virtual switch (vSwitch) sit 
atop the master controller. The master 
controller provides support for userland 
services, which are used by independent 
programs to provide application-specif-
ic services. The NOVA microhypervisor 
provides minimal primitives that enable 
these features. The Active Security mod-
ule enforces security policies on guests 
at runtime. UMX is the system console 
multiplexer. 
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An Extensible, Distrusting Platform
The BHV supports running unverified applications side by side with verified ones, without compromising the in-
tegrity of the verified applications. Without this requirement, we could verify a weaker specification that requires 
a disciplined use of the API. However, these weaker specifications are insufficient when adversarial code might 
be running on the platform. To address this issue, the BHV’s top-level specification uses an operational semantics 
based on process calculi in which untrusted processes, such as guests, are modeled by their machine-level behav-
ior. Although verbose in some cases, operational semantics enables us to model untrusted code as simply “what 
the bits say.”

Supporting unverified applications is crucial in practice because it enables a path to verified systems rather than 
mandating an all-or-nothing mentality. This enables both “preview” releases, which may contain unverified func-
tionality, and the ability to support customer applications, which have not been verified.
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BRiCk—A Program Logic for C++ 
To verify C++ programs, we need formal reasoning principles for the language fragment that the programs use. These 
rules are codified in BRiCk,5 the BedRock C++ program logic. BRiCk builds off of the Clang/LLVM6 compiler front end 
and uses its source-level abstract syntax to represent C++ programs.

BRiCk axiomatizes reasoning principles for each type of node. We justify these reasoning principles informally by ap-
pealing to the C++ standard7 and academic work-formalizing aspects of both C8 and C++.9 The choice to formalize C++ 
axiomatically, rather than operationally, is primarily a pragmatic one: it enables us to easily underspecify language 
constructs, grow the supported feature set over time and, we believe, accurately model the standard.

Automation for BRiCk 
Automation is crucial to scaling program verification to large and evolving code bases. BedRock System’s automation 
for BRiCk is built around the mental model of symbolic debugging, where the current state is expressed formally in 
separation logic and the core automation interprets program fragments against this state. To be understandable, the 
automation must preserve program-specific abstractions as much as possible. Reaching into a complex invariant to 
justify a read may enable the verification to make progress, but the resulting state is often incomprehensible to clients 
who wish to remain insulated from the definition of the invariant. To achieve this, library developers write, and prove, 
“hints” encapsulating common reasoning patterns that are not immediately obvious from the code. These hints cover 
coding patterns sanctioned by the library writer and are applied automatically when clients follow these guidelines. 
Deviating from these coding patterns leads the automation to get stuck, but in an understandable state that facilitates 
debugging.

BedRock System’s automation also provides more manual tactics for reasoning about language constructs that de-
serve special attention. For example, loop invariants are notoriously difficult to find automatically, so we provide 
tactics to specify loop invariants manually. Our collection of tactics also includes some more specialized tactics for 
reasoning about common coding patterns such as cas-loops and foreach-loops. Beyond their general usefulness, 
these tactics also document reusable reasoning patterns. We have also experimented with tactics that apply more ag-
gressive heuristics. However, we tend to prefer slightly more verbose (but maintainable) proof scripts as these more 
aggressive tactics can sometimes fail in unpredictable ways.
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Once we have covered the core functionality of the 
class, we formalize the definitions. Generally, this pro-
cess is rather straightforward, but it relies on good 
working knowledge of the verification tool (Coq, in our 
case). At this level, we are choosing specific data repre-
sentations, such as whether to use a list or a finite map, 
how to express the relationship between an array in 
C++ and its length, and so on. Many of these problems 
can be solved prescriptively, e.g., “always use arrayR to 
represent an array”; however, we do not claim to have 
all of right answers yet. But as we verify more code, 
we refine patterns and create new ones. Beyond pro-
viding a codified best practice, patterns such as these 
also enable us to narrow the focus of the automation’s 
development. 

When code does not fit within our existing abstrac-
tions, we look to expand them, develop new ones, or 
rework the code to fit within them. Although rewriting 
code may seem to indicate that our techniques are 
not up to the challenge, we note that developers often 
prefer simplified code, and on many occasions, very 
subtle bugs have been found around these points. 
Mathematically, separation logic can scale to arbitrari-
ly complex code, but keeping reasoning simple is often 
the better path in the long term. When proposing code 
changes, we always consider runtime costs, readabili-
ty considerations, and limitations (or enablements) of 
the new code.

Bugs
Throughout verification we found and fixed a number 
of bugs across all parts of our stack. Although many 
bugs are found during testing, we have determined 
that concurrency bugs, resource leaks, and error-han-
dling logic are especially difficult to test and are there-
fore often caught by code reviews or during proofs. 
For example, in developing our shared-pointer library, 
we ran a significant number of randomized tests with-
out uncovering several bugs caught during the FM 
code review. Another instance of a subtle logic bug 
was a synchronization issue within NOVA, which could 
cause incorrect continuation to be used when switch-
ing threads (execution contexts in NOVA). In these in-
stances, and many others involving concurrency, we 
found that state-based reasoning, which focuses on 
what is true in a particular state, is more useful than 
trace-based reasoning, which describes the operations 
that took place to arrive at a given state, for zeroing in 
on problems.

Although the previous two bugs were found during 
the FM review phase, in other instances, our reviews 
missed subtle bugs that were ultimately uncovered as 
we formalized the proof. In the UMX, we uncovered a 
synchronization issue that would occur if a client dis-
connected at precisely the right time during data for-
warding. Ultimately, this bug could cause data loss, but 
reliably triggering it in a testing scenario would be ex-
tremely difficult.

Beyond logical bugs, FM code reviews and proofs un-
covered portability and standards compliance issues 
within our code. Portability bugs often arise in code 
that implements low-level data marshaling and might 
rely, e.g., on the endianness of the system or the ability 
to perform unaligned reads and writes. Although strict 
adherence to the C++ standard may seem overly pe-
dantic, we believe that it is the only viable path forward 
in the long term. Optimizing compilers crucially rely on 
undefined behavior to enable optimizations, and non-
compliant code can result in bugs at higher optimiza-
tion levels that are difficult to track down because they 
do not exist in debug builds. The C++ standard is the 
contract between developers and compiler writers; if 
developers need something that the standard does 
not provide, the standard needs to be expanded to 
provide it. 
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Proof Maintenance. Keeping proofs in sync with code is 
essential to maintaining high quality through refactor-
ings. At BedRock Systems, our continuous integration 
(CI) checks that all proofs succeed before any merge 
to the main branch. Overall, we have not found this to 
be particularly burdensome as well-designed verified 
code tends to be fairly stable. When code changes are 
small (and correct), our automation is often able to dis-
charge new obligations automatically, and no changes 
to the proof scripts are necessary. Inevitably though, 
more complex changes, especially those that affect 
class invariants and concurrency protocols, require 
manual proof maintenance. Robust proof automation 
and appropriate abstractions mitigate the burden to 
some degree, but do not scale to all interface- and 
specification-level refactorings. In these situations, the 
cost is unavoidable: significant algorithmic changes 
will require fundamentally different proofs.

Beyond guaranteeing bug freedom, one benefit of 
proofs over testing is that they are hyperlocal. Proof 
failures tell you exactly the point where the code may 
be broken as well as giving you the symbolic state that 
is problematic. This information is especially useful in 
tracking down concurrency “Heisenbugs” that occur 
infrequently and are therefore difficult to test and re-
produce.

When working on improving automation, checking 
proofs in CI is crucial as proofs of code double as test 
cases for automation. Timing statistics from CI runs 
provide useful information around automation perfor-
mance. Line-count statistics of new proofs are a good 
first-order signal of the effectiveness of the automa-
tion because verbose proofs often point to shortcom-
ings in automation, although it is important to factor in 
complexity of the underlying code as well.

Extensible Automation
The need to understand and maintain proofs requires 
that we express them at a high level. Making this pos-
sible for larger C++ programs that evolve over time 
requires that we keep the proofs small by automating 
the administrative reasoning necessary to complete a 
proof. To facilitate high-level reasoning, our automa-
tion is post-facto extensible using stylized reasoning 
principles that we call hints. Hints are justified once and 
applied auto-matically by automation whenever the sit-
uation merits it. These hints enable us to reason at a 
natural level of abstraction while also insulating clients 

from some of the more technical details of specifica-
tions and code.

We contrast this semiautomatic reasoning with more 
manual reasoning traditionally provided by interactive 
theorem provers and the Iris Proof Mode (IPM).11 The 
IPM provides fine-grained context management and 
low-level primitive tactics for reasoning about sep-
aration logic formulas. This sort of reasoning is ideal 
for subtle proofs that require tricky resource man-
agement; our metatheory leverages this verification 
approach extensively. When verifying C++ programs, 
however, we find that large parts of the proof are “fol-
low-your-nose” proofs. Indeed, in many instances, the 
program is effectively the proof, and the proof is mere-
ly bookkeeping. In these circumstances, it is ideal to 
teach the automation to follow its own nose so that 
the verification engineer can focus on subtle aspects 
of the verification.

We offer two instances where custom, but reusable, 
hints accelerated proof development. The first arose 
when verifying higher-level specifications on top of 
lower-level ones for the microkernel. When verifying 
the microkernel, we need to provide specifications 
that are maximally distrusting of applications running 
atop it. We achieve this by providing low-level, “undis-
ciplined” specifications that can support arbitrary, es-
pecially concurrent, usage. In practice, however, these 
specifications can be both difficult to read and program 
against. On top of these specifications, we can prove 
simpler specifications that are able to hide details 
when using the API in a more restricted setting. As a 
simple example, if we know that a capability must refer 
to a semaphore object, then we do not need to consid-
er error codes from the microkernel that correspond 
to capability mismatches. Proving the well-behaved 
specifications from the unsafe ones can be onerous, 
but is generally not complicated; however, the tedium 
of this task can be alleviated by a small number of ge-
neric insights, which are easily expressed within our 
hint infrastructure. Using these hints, we reduced the 
size of some proofs by more than half, which great-
ly increased the readability and maintainability of the 
proofs as the specifications evolved. Ultimately, the 
proofs became fairly close to the proof outlines written 
by experts because the automation was extended with 
the expert’s strategy for reasoning.
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A second instance where hints were able to abstract 
low-level details arose when working with arrays, and 
especially with array initialization and destruction. For 
modularity purposes, BRiCk’s semantics describes ar-
ray initialization compositionally by initializing each 
array cell sequentially. Although this provides a clear 
specification, using this approach becomes quite costly 
when working with large arrays. Providing special hints 
for default-initializing primitive arrays enabled us to 
fuse many reasoning steps together, resulting in more 
natural descriptions of the program state. Our hints 
can also codify patterns for reasoning about array ac-
cesses in a natural way by decomposing (and recom-
posing) a large array into locations of interest and the 
rest of the array. These sorts of “borrows” constitute 
a large part of the administrative reasoning necessary 
in low-level C++ programs, and our ability to express 
these borrowing patterns generically generally means 
that the automation can churn through array reason-
ing with relatively little manual intervention.

Industrial Programming Languages
One of the largest sources of complexity in verification 
is not the code we write but the language in which we 
write it. C++, and modern programming languages 
in general, are both large and complex and provide 
formal reasoning challenges in and of themselves. Al-
though necessary to address, we note that these chal-
lenges arise on a per-language rather than a per-pro-
gram basis, so most FM practitioners need not worry 
about these issues. Further, BRiCk already addresses 
these issues for the fragment of C++ that it supports.

Supporting Large Languages. The size of modern lan-
guages means that we must formalize them incremen-
tally. To facilitate this, BRiCk’s semantics is directly ex-
pressed as a program logic, rather than as a derived 
logic on top of an underlying operational semantics. 
This approach allows us to leverage the built-in modu-
larity of separation logic to modularize our semantics. 
It also makes it natural to underspecify the semantics 
of particular language constructs, a property that is 
essential early on and still useful when working with 
multiple related languages, e.g., C++14 and C++17.

Although many language features can be desugared to 
simpler primitives, we avoid this when possible. This 
is partly for soundness as some transformations only 
refine the high-level specification; however, there are 
also reasons to support the sugar natively. Consider  

virtual functions in C++. 
In theory, we could desugar these to tables of function 
pointers, but doing so (even abstractly) would expose 
reasoning principles not justified by the C++ standard. 
Further, desugaring the construct would require all de-
velopers using the construct to reason about the de-
sugaring, something which is clearly undesirable. Sup-
porting the feature directly not only keeps us closer to 
the standard but also enables us to build opinionated 
abstractions and automation for the use cases of vir-
tual functions.

Supporting Sophisticated Language Features. Industri-
al languages also have features that are difficult to rea-
son about. The archetypical difficult language feature 
in C++ is the object model, which is front and center 
in C++ semantics. Keep in mind that the concurrent 
memory model is another cross-cutting feature, albeit 
one more limited in scope, because regular C++ vari-
able accesses must be data-race free. Although devel-
opers often think of C++ pointers as virtual addresses, 
the C++ language puts significantly more structure on 
them. This additional structure gives optimizers the 
ability to reason more aggressively about programs 
but comes at the cost of more bookkeeping in formal 
proofs. For example, our semantics tracks pointer 
provenance to rule out undefined behavior that arises 
from low-level pointer manipulation.

Although not pervasive, the interoperation between 
C++ and assembly is another necessary part of low-lev-
el programming. Beyond just giving a semantics for 
assembly, we are forced to answer questions such as, 
“What is the effect of sharing memory between multi-
ple programs?” Empirically, we know what compilers 
do, but the standard text is silent on many of these 
low-level questions.

To avoid these issues in the short term, we make ju-
dicious, simplifying assumptions that seem to hold 
in practice. For example, BRiCk assumes that deallo-
cating memory does not invalidate the pointer, an as-
sumption not sanctioned by the standard. This choice 
requires that we add liveness side conditions to cer-
tain operations to avoid obvious unsoundnesses. Re-
searchers suggest12 that this seems necessary (in C) to 
support common, low-level programming idioms and 
is therefore likely justified by compilers in practice.
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Figure 2. The lifecycle of a 
specification (spec). We veri-
fy code in spikes that address 
both users and implementers 
of specified code, iteratively 
refining specs until they are 
both realizable and useful. Lat-
er clients benefit from usabili-
ty improvements that occur in 
previous verification cycles.

Incorporating FM into all aspects of the software de-
velopment lifecycle, from software system design to 
implementation to code maintenance, has the poten-
tial to revolutionize the software industry. But making 
pervasive FM a reality requires solving deep technical 
and nontechnical challenges, many of which we have 
begun to address at BedRock Systems.

On the technical side, we see refining language stan-
dards and improving automation as crucial barriers 
that are beginning to fall. Reasoning about industrial 
languages such as C++ is necessary but raises difficult 
problems in semantics, especially around complicated 
corners of standards. This is an active area of research, 
and increasingly, standards committees (especially the 
C standard committee) are seeing the value in it. Engi-
neering verification to scale to complex industrial code 

bases means building automatable, but also highly 
expressive, program logics. BedRock System’s auto-
mation for C++ supports a hybrid of highly automat-
ed reasoning when possible and deliberate reasoning 
when necessary. The need for both is essential as pro-
grams grow not only in size but also complexity.

On the nontechnical side, it is crucial to expand profi-
ciency in FM across the board. Specialized FM experts 
will still be necessary, but we believe that much of the 
knowledge required for verification could be made 
accessible to undergraduates. Mainstream interest 
in Rust and the growing popularity of functional pro-
gramming languages both suggest that attitudes to-
ward new technologies are changing in a positive way 
for FM. In the meantime, on-the-job training can com-
pensate for a lack of general knowledge.
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Hiring and Training for FM
Spike-based formal verification improves onboarding, but hiring for FM is still difficult. There are few candidates 
with general FM expertise and even fewer with expertise in specialized areas such as concurrent separation logic. 
The universities teaching FM to undergraduates help mitigate the gap, but we have found that teaching FM “on the 
job” is necessary. Even Ph.D.s with deep experience in separation logic require training to transition from academic 
FM (which often focus on smaller programs and meta-level issues) to industrial program verification. Over time, 
this transition period at BedRock Systems has shortened, and we believe that good training material and exposure 
through spike-based verification will further reduce the overhead.

When hiring general software engineers, we have found that candidates with functional programming background 
are able to pick up FM much more readily than those without such exposure. In part, this is attributable to the 
fact that Coq is built around a functional programming language (Gallina), but we believe that it is more than that. 
Functional programming languages tend to focus on minimalism, which seems to train developers to more quickly 
separate the core problem from the noise surrounding it. This skill is transferable not only to specification writing 
but also to the design of good interfaces. 
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