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The BedRock HyperVisor™ is a commercial, highly concurrent, verified virtualiza-
tion platform that employs formal methods to enable proofs of complex, lock-free
concurrent code; support automating proofs of large programs; and integrate with
“informal” parts of the software lifecycle.

Building on academic research but with feet firmly
planted in industrial applications, BedRock Systems™
is in the process of building the BedRock HyperVisor
(BHV™), a formally verified, highly concurrent, mi-
crokernel-based commercial hypervisor. By for-
mally verified, we mean that the C++ and assem-
bly-code implementation of the operating system
is proved correct in the Coq proof assistant." By
highly concurrent, we mean that we use, and veri-
fy, lock-free data structures in core parts of the im-
plementation. That the BHV is microkernel based
means that most of the system runs in user mode
on top of a small, kernel-level program, which pro-
vides bare-bones abstractions such as address
spaces and interprocess communication (IPC).

To verify the BHV, BedRock Systems is pioneer-
ing the use of formal methods (FM) at scale. This
experience report explains how we use FM and
why. Our experience shows that advances in FM
techniques finally enable them to integrate well
in the standard software development process. In
essence, FM-based software development is “just”
mathematically rigorous software engineering.
Additionally, the design aims of FM align with soft-
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ware engineering best practices. Further, our ex-
periences suggest that FM techniques are increas-
ingly able to directly address (and in some cases,
improve upon) current best practices in software
engineering.

Despite the alignment of aims, the road is not al-
ways an easy one. Pioneering FM at scale means
that we must build many tools and libraries our-
selves. Although FM tools still lag behind more
mainstream tools, we believe they have matured
to the point of being usable in an industrial con-
text. Further, development and adoption of these
tools is growing, and we anticipate the situation
will continue to improve.

Beyond the tools themselves, writing verified soft-
ware, even in mainstream languages, still suffers
from a dearth of libraries. One of the main benefits
of mature ecosystems such as C++ is the availabil-
ity of libraries, but very few of these libraries are
formally specified, let alone verified. Our own work
has already begun to address this problem inter-
nally, and we believe that it is just a matter of time
before developers are able to use libraries that are
formally verified.
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OUTLINE

We report on BedRock System’s work to build a verified, performant hypervisor. Achieving this goal requires
system-, as opposed to program-level, FM. These requirements inform our FM process, which starts in the
design phase. Here, the ability to consider problems abstractly enables us to rapidly explore the design space.
This process often produces replicable patterns that can be precisely documented, informing future design
and development.

We connect this design-level formalization to the running code through the rest of the software engineering
process. Making this connection formal ultimately delivers the correctness guarantees that FM advertises,
e.g., eliminating bugs, but it also brings two challenges: the development of a program logic for a mainstream
programming language, C++, and extensible automation to translate high-level reasoning principles into
robust proofs about low-level code.

Scaling FM requires solving nontechnical problems as well. We explain how we manage our FM development
process for both predictability and reliability. Our approach is agile based and centers on daily standups
and frequent code reviews. We focus our efforts on concentrated verticals, which we call spikes, to ensure
that specifications are both usable by clients and provable for implementers. Beyond delivering better code,
focused group work also improves onboarding and on-the-job training, which are crucial when working on
the bleeding edge. Our experiences suggest that driving otherwise open-ended research from concrete “in
the code” problems is crucial to predictable execution, but can be a difficult shift from a more theoretical
academic mindset.
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THE BEDROCK HYPERVISOR™
(BHV™)

The aim of FM at BedRock Systems is to develop a
flexible and ultrasecure compute platform. For flexi-
bility, the BHV follows a microkernel architecture (see
Figure 1). Independent applications provide decen-
tralized services for features such as virtual compute
and networking. This modular architecture enables us
to customize the BHV's feature set by selecting differ-
ent applications in different contexts. However, it also
requires us to establish the system'’s correctness in a
similarly modular fashion.

Virtual Compute

The BHV's core use case is as a virtualization platform.
This functionality is provided by the BedRock Virtual
Machine Monitor (VMM), which virtualizes a single un-
modified computer. Although the code is complex and
tied to the BHV's application programming interface
(API), the top-level specification is simple: the BedRock
VMM is the correct implementation of a bare-metal
computer. We call this property the

BedRock Bare-Metal Property™

Formally, the Bare-Metal Property™ states that the

BedRock VMM is a timing-insensitive refinement of the
hardware specification. (Note that the FM work on BHV
currently focuses on the ARM architecture, but other
architectures will be supported in the future.) Infor-
mally, this means that anything that happens when
running a guest on the BedRock VMM could happen on

a compliant system. Guests act as if they are running
on isolated bare metal and achieve a similar level of
security guarantee. This enables consolidation without
the added risk of lateral (cross-VM) attacks on the vir-
tualization platform.

The bare-metal property is enhanced by BedRock
Active Security®, which acts as a runtime monitor for
virtual machines. Interms of abare-metal guarantee, an
Active Security-enabled guest runs on a standard pro-
cessor with (potentially guest-specific) security exten-
sions, e.g., register protection or write-execute mutual
exclusion. With this specification, security-compliant
guests cannot distinguish an Active Security-enabled
VMM from hardware. Guests that violate the policy,
however, see a machine that includes the runtime se-
curity monitor.

Virtual Networking/Communication

Leveraging the modularity of the BHV architecture,
we extend the single-computer correctness condition
to multiple computers using a virtual network switch.
The virtual switch (vSwitch) enables guests to commu-
nicate with one another using the virtual I/0 device
net-work protocol.? As in the VMM, the software im-
plementation enables expressive and dynamic policies
to be enforced in the vSwitch. The architecture of the
vSwitch occurs repeatedly throughout the BHV, e.g., in
the console multiplexer (UMX) and other services. The
commonality enables abstraction and reuse within our
implementation.

Figure 1. The BHV. Top-level applications

such as the Virtual Machine Monitor
(VMM) and virtual switch (vSwitch) sit
atop the master controller. The master
controller provides support for userland
services, which are used by independent
programs to provide application-specif-
ic services. The NOVA microhypervisor
provides minimal primitives that enable
these features. The Active Security mod-
ule enforces security policies on guests
at runtime. UMX is the system console
BHV multiplexer.
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An Extensible, Distrusting Platform

The BHV supports running unverified applications side by side with verified ones, without compromising the in-
tegrity of the verified applications. Without this requirement, we could verify a weaker specification that requires
a disciplined use of the API. However, these weaker specifications are insufficient when adversarial code might
be running on the platform. To address this issue, the BHV's top-level specification uses an operational semantics
based on process calculi in which untrusted processes, such as guests, are modeled by their machine-level behav-
ior. Although verbose in some cases, operational semantics enables us to model untrusted code as simply “what
the bits say.”

Supporting unverified applications is crucial in practice because it enables a path to verified systems rather than
mandating an all-or-nothing mentality. This enables both “preview” releases, which may contain unverified func-

tionality, and the ability to support customer applications, which have not been verified.

FORMAL METHODS

AT BEDROCK SYSTEMS

Achieving formal guarantees at the level of the BHV
places demanding requirements on our FM tech-
niques. In contrast to many code-based verifications,
which focus on verifying a single application, estab-
lishing the correctness of the BHV requires reason-
ing across multiple programs coordinating through
low-level mechanisms, such as shared memory. The
need to interoperate with unverified applications lim-
its the assumptions that we can make across these
boundaries, which sometimes requires us to return
to first principles when developing a verification strat-
egy. Consider, for example, shared memory queues.
When both parties are trusted, a server can assume
that clients follow the protocol; however, when the cli-
ent could be malicious, the server is still obligated to
behave correctly to ensure that the bad actor cannot
compromise the guarantees of well-behaved clients.

These constraints require our techniques to apply at
the machine-code level while still enabling the use of
language-specific reasoning principles in contexts that
we prove are well behaved. The presence of unverified
components adds additional complexity to an already
challenging problem, but is needed to enable the tran-
sition to a verified software stack.
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Language-agnostic, system-level software verification
demands a unifying formalism, one that can uniformly
talk about the values of program variables, state of hard-
ware devices, application-level protocols, and more.
Further, verification techniques must support open-
world reasoning, which means that the proofs of in-
dividual threads can be combined with the proofs of
other threads (and arbitrary contexts) to establish a
whole-system guarantee.

Separation logic® satisfies these exacting require-
ments. Modern separation logic, as embodied by the
Iris library,* is built around first-class resources that
can be owned by executing entities, e.g., threads, and
invariants, which provide a mechanism for atomically
sharing these resources between threads. At the heart
of separation logic is the separating conjunction (writ-
ten P * Q), which implicitly expresses disjointness of
the resources in P and Q. Disjointness is the right de-
fault for building compositional systems, and the suc-
cinct manner of expressing it in separation logic leads
to elegant and modular specifications. Although using
resources to reason about memory is standard prac-
tice, the generality of resources means that we can use
them to track other kinds of system state, such as ker-
nel objects and the state of hardware devices. Because
separation logic treats resources uniformly, it is also
possible to define and compose abstractions that en-
capsulate resources of distinct types, e.g., those that
bundle program variables and kernel resources.



BRiCk—A Program Logic for C++

To verify C++ programs, we need formal reasoning principles for the language fragment that the programs use. These
rules are codified in BRiCk,5 the BedRock C++ program logic. BRiCk builds off of the Clang/LLVM® compiler front end
and uses its source-level abstract syntax to represent C++ programs.

BRiCk axiomatizes reasoning principles for each type of node. We justify these reasoning principles informally by ap-
pealing to the C++ standard’” and academic work-formalizing aspects of both C® and C++.° The choice to formalize C++
axiomatically, rather than operationally, is primarily a pragmatic one: it enables us to easily underspecify language
constructs, grow the supported feature set over time and, we believe, accurately model the standard.

Automation for BRiCk

Automation is crucial to scaling program verification to large and evolving code bases. BedRock System’s automation
for BRiCk is built around the mental model of symbolic debugging, where the current state is expressed formally in
separation logic and the core automation interprets program fragments against this state. To be understandable, the
automation must preserve program-specific abstractions as much as possible. Reaching into a complex invariant to
justify a read may enable the verification to make progress, but the resulting state is often incomprehensible to clients
who wish to remain insulated from the definition of the invariant. To achieve this, library developers write, and prove,
“hints” encapsulating common reasoning patterns that are not immediately obvious from the code. These hints cover
coding patterns sanctioned by the library writer and are applied automatically when clients follow these guidelines.
Deviating from these coding patterns leads the automation to get stuck, but in an understandable state that facilitates
debugging.

BedRock System’s automation also provides more manual tactics for reasoning about language constructs that de-
serve special attention. For example, loop invariants are notoriously difficult to find automatically, so we provide
tactics to specify loop invariants manually. Our collection of tactics also includes some more specialized tactics for
reasoning about common coding patterns such as cas-loops and foreach-loops. Beyond their general usefulness,
these tactics also document reusable reasoning patterns. We have also experimented with tactics that apply more ag-
gressive heuristics. However, we tend to prefer slightly more verbose (but maintainable) proof scripts as these more
aggressive tactics can sometimes fail in unpredictable ways.
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DESIGN-TIME FM

Although it is tempting to think of verification as anoth-
er step added to the end of the software development
process, we have found that this approach misses out
on much of the value that FM can provide. Undoubted-
ly there is value in the final proof, but FM insights can
dramatically improve code quality even before we ver-
ify the code. Beyond improved code quality, design-level
FM often produce easier-to-verify code that is more
future proof. This is especially important because it
avoids expensive refactorings of both the code and the
proof. Although FM reviews are an important input to
the final verified product, systems engineers generally
find that such reviews help to clarify high-level design
thinking.

We consider two instances, among many, where

design-time interaction with systems engineers clar-
ified an existing design and influenced a refactoring.
In the design phase, many of the insights of FM could
have come equally from architectural and design re-
views. The added value of FM lies in the ability to carry
the insights forward, from high-level discussion down
to code-level specification and proof artifacts. Many in-
sights of FM are inspired by abstractions that work well
in functional programming, e.g., higher-order func-
tions such as folds. The expressivity of higher-order
separation logic allows us to use these abstractions in
low-level C++ code, e.g., modeling a C++ class as an ef-
fectful function, rather than its first-order representa-
tion to insulate developers from later extensions.

Locking Protocols in the VMM

Hardware virtualization is a complex task with a de-
manding specification. In the VMM, the problem is ex-
acerbated by the fact that much of the “code” that we
are working with is not under our control. Specifically,
our verification cannot make any assumptions about
the guest code, its memory-access patterns, or its use
of synchronization.
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When virtualizing a multicore machine, proper syn-
chronization is crucial. Even though our implementa-
tion seeks to be as efficient as possible, it is sometimes
necessary to pause the virtual CPUs to give the virtu-
alization layer a snapshot of the system that it can in-
spect in a stable way. We refer to this pausing as round
up; one module, typically Brass, requests that the vir-
tual CPUs of a guest synchronize to prevent memory
access during a certain period of time.

Specifying round up informally (even with a working
implementation) turned out to be difficult for technical
reasons: first, virtual CPUs can run either on the hard-
ware or in our software instruction emulator; second,
both virtual CPUs and virtual devices can access the
memory.

Ultimately, separation logic provided a precise and
extensional explanation that was understandable by
both systems and FM engineers. The central idea was
to model a memory “lock” token, mediating access to
the guest's memory. The full ownership of this token
guarantees exclusive access to the guest's memory re-
gions. A partial ownership allows shared access which,
while still safe, does not provide atomicity guarantees.
When leveraging hardware virtualization, the program
has no fine-grained control over the guest's actions, so
the hardware thread owns a portion of the lock token
(recall that the guest manages its own synchroniza-
tion). The semantic condition of taking a step on be-
half of the guest shows that the memory token is also
needed by the instruction emulator. When a guest vir-
tual CPU is not running on the hardware or being em-
ulated in software, it can relinquish its portion of the
token, thus ceding its ability to access memory. The
notion of delegatable ownership is a central tenet of
separation logic and is a useful strategy when model-
ing systems such as this one. By expressing the ability
to do something as a first-class resource, we avoid the
need to think about all the entities that could do it.
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Architecting Services

IPC is a staple of interprocess coordination in microker-
nel- based architectures. NOVA'™ provides a fast, intra-
core IPC mechanism, and the BHV builds higher-level
concepts of services and sessions to enable sharing ker-
nel resources such as memory and semaphores. The
stateful, reactive nature of services is a fundamentally
different development paradigm than the “direct” pro-
gramming model; care must be taken when developing
applications like these, especially when clients should
not always be trusted. Code reviews revealed that many
early services suffered from the same mishandling of
subtle situations such as session lifetime. Further, the
ad hoc development of many services meant that we
lost opportunities to share code.

To support the reactive programming model, we devel-
oped a code- and specification-level template for writ-
ing and specifying verifiable services. The abstraction
encapsulates session management by decoupling con-
nect and disconnect and requiring developers to think
about disconnect logic under arbitrary states of the pro-
tocol. Code that fits into the template is highly regular
and has a much higher chance of being specifiable than
more ad hoc code. Further, the library completely en-
capsulates the subtle logic around session lifetime that
plagued earlier code. Specifying this abstraction turned
out to be quite difficult due to the fact that certain op-
erations such as connect and disconnect are silent in
the BHV. Our approach uses purely logical “callbacks”
that enable servers to logically set up services before
the application is notified. These callbacks can transi-
tion the service's specification state, and the code can
“catch up” when it learns of the new connection in the
first message. This approach enables us to provide an
abstraction that is much easier to reason about, and to
hide the implementation and proof details from users.

The specification here relies on sophisticated features
of concurrent separation logic but, in the end, the
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abstraction is fairly intuitive and it enables a simple pro-
gramming model. Situations such as these, which have
occurred several times to date across our codebase,
highlight the value of separation logic as a means to
simplify code and proofs.

VERIFICATION ENGINEERING

Although it is common for design reviews to uncover
misunderstandings and bugs, being certain the code is
bug free requires verifying that it satisfies its specifica-
tion. At BedRock Systems, we have successfully verified
production code at all levels of our virtualization stack.
Beyond pure C++ libraries, our verification also covers
user-space device drivers (for a serial driver and a direct
memory access driver), a concurrent terminal muti-
plexer, and portions of other applications and NOVA.

Developing Proofs

After the specification is developed and the code is writ-
ten (not always in that order), BedRock Systems’ pro-
cess prescribes a detailed code review with an FM engi-
neer. Together, the two (or more) develop an informal
proof that the code satisfies the specification. In most
cases, this involves a sketch of the “class invariant” and
a Hoare outline for the nontrivial functions provided by
the class. These outlines directly connect the specifica-
tion and the code—there is no additional layer of mod-
eling.

This review is often an iterative process, and it is es-
sential that we can get through a cycle rapidly. A com-
mon approach is to formulate a class invariant and
then expand and refine it as we incorporate new bits of
functionality in successively greater detail. In practice,
much of this iteration is carried out over a less formal
medium, e.g., a (virtual) whiteboard. Separation logic re-
sources are often nicely conceptualized graphically, and
we find that sketching boxes and moving them around
can be very helpful to explore abstractions and imple-
mentations.



Once we have covered the core functionality of the
class, we formalize the definitions. Generally, this pro-
cess is rather straightforward, but it relies on good
working knowledge of the verification tool (Coq, in our
case). At this level, we are choosing specific data repre-
sentations, such as whether to use a list or a finite map,
how to express the relationship between an array in
C++ and its length, and so on. Many of these problems
can be solved prescriptively, e.g., “always use arrayR to
represent an array”; however, we do not claim to have
all of right answers yet. But as we verify more code,
we refine patterns and create new ones. Beyond pro-
viding a codified best practice, patterns such as these
also enable us to narrow the focus of the automation’s
development.

When code does not fit within our existing abstrac-
tions, we look to expand them, develop new ones, or
rework the code to fit within them. Although rewriting
code may seem to indicate that our techniques are
not up to the challenge, we note that developers often
prefer simplified code, and on many occasions, very
subtle bugs have been found around these points.
Mathematically, separation logic can scale to arbitrari-
ly complex code, but keeping reasoning simple is often
the better path in the long term. When proposing code
changes, we always consider runtime costs, readabili-
ty considerations, and limitations (or enablements) of
the new code.

Bugs

Throughout verification we found and fixed a number
of bugs across all parts of our stack. Although many
bugs are found during testing, we have determined
that concurrency bugs, resource leaks, and error-han-
dling logic are especially difficult to test and are there-
fore often caught by code reviews or during proofs.
For example, in developing our shared-pointer library,
we ran a significant number of randomized tests with-
out uncovering several bugs caught during the FM
code review. Another instance of a subtle logic bug
was a synchronization issue within NOVA, which could
cause incorrect continuation to be used when switch-
ing threads (execution contexts in NOVA). In these in-
stances, and many others involving concurrency, we
found that state-based reasoning, which focuses on
what is true in a particular state, is more useful than
trace-based reasoning, which describes the operations
that took place to arrive at a given state, for zeroing in
on problems.
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Although the previous two bugs were found during
the FM review phase, in other instances, our reviews
missed subtle bugs that were ultimately uncovered as
we formalized the proof. In the UMX, we uncovered a
synchronization issue that would occur if a client dis-
connected at precisely the right time during data for-
warding. Ultimately, this bug could cause data loss, but
reliably triggering it in a testing scenario would be ex-
tremely difficult.

Beyond logical bugs, FM code reviews and proofs un-
covered portability and standards compliance issues
within our code. Portability bugs often arise in code
that implements low-level data marshaling and might
rely, e.g., on the endianness of the system or the ability
to perform unaligned reads and writes. Although strict
adherence to the C++ standard may seem overly pe-
dantic, we believe that it is the only viable path forward
in the long term. Optimizing compilers crucially rely on
undefined behavior to enable optimizations, and non-
compliant code can result in bugs at higher optimiza-
tion levels that are difficult to track down because they
do not exist in debug builds. The C++ standard is the
contract between developers and compiler writers; if
developers need something that the standard does
not provide, the standard needs to be expanded to
provide it.




Proof Maintenance. Keeping proofs in sync with code is
essential to maintaining high quality through refactor-
ings. At BedRock Systems, our continuous integration
(Cl) checks that all proofs succeed before any merge
to the main branch. Overall, we have not found this to
be particularly burdensome as well-designed verified
code tends to be fairly stable. When code changes are
small (and correct), our automation is often able to dis-
charge new obligations automatically, and no changes
to the proof scripts are necessary. Inevitably though,
more complex changes, especially those that affect
class invariants and concurrency protocols, require
manual proof maintenance. Robust proof automation
and appropriate abstractions mitigate the burden to
some degree, but do not scale to all interface- and
specification-level refactorings. In these situations, the
cost is unavoidable: significant algorithmic changes
will require fundamentally different proofs.

Beyond guaranteeing bug freedom, one benefit of
proofs over testing is that they are hyperlocal. Proof
failures tell you exactly the point where the code may
be broken as well as giving you the symbolic state that
is problematic. This information is especially useful in
tracking down concurrency “Heisenbugs” that occur
infrequently and are therefore difficult to test and re-
produce.

When working on improving automation, checking
proofs in Cl is crucial as proofs of code double as test
cases for automation. Timing statistics from Cl runs
provide useful information around automation perfor-
mance. Line-count statistics of new proofs are a good
first-order signal of the effectiveness of the automa-
tion because verbose proofs often point to shortcom-
ings in automation, although it is important to factor in
complexity of the underlying code as well.

Extensible Automation

The need to understand and maintain proofs requires
that we express them at a high level. Making this pos-
sible for larger C++ programs that evolve over time
requires that we keep the proofs small by automating
the administrative reasoning necessary to complete a
proof. To facilitate high-level reasoning, our automa-
tion is post-facto extensible using stylized reasoning
principles that we call hints. Hints are justified once and
applied auto-matically by automation whenever the sit-
uation merits it. These hints enable us to reason at a
natural level of abstraction while also insulating clients
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from some of the more technical details of specifica-
tions and code.

We contrast this semiautomatic reasoning with more
manual reasoning traditionally provided by interactive
theorem provers and the Iris Proof Mode (IPM)." The
IPM provides fine-grained context management and
low-level primitive tactics for reasoning about sep-
aration logic formulas. This sort of reasoning is ideal
for subtle proofs that require tricky resource man-
agement; our metatheory leverages this verification
approach extensively. When verifying C++ programs,
however, we find that large parts of the proof are “fol-
low-your-nose” proofs. Indeed, in many instances, the
program is effectively the proof, and the proofis mere-
ly bookkeeping. In these circumstances, it is ideal to
teach the automation to follow its own nose so that
the verification engineer can focus on subtle aspects
of the verification.

We offer two instances where custom, but reusable,
hints accelerated proof development. The first arose
when verifying higher-level specifications on top of
lower-level ones for the microkernel. When verifying
the microkernel, we need to provide specifications
that are maximally distrusting of applications running
atop it. We achieve this by providing low-level, “undis-
ciplined” specifications that can support arbitrary, es-
pecially concurrent, usage. In practice, however, these
specifications can be both difficult to read and program
against. On top of these specifications, we can prove
simpler specifications that are able to hide details
when using the APl in a more restricted setting. As a
simple example, if we know that a capability must refer
to a semaphore object, then we do not need to consid-
er error codes from the microkernel that correspond
to capability mismatches. Proving the well-behaved
specifications from the unsafe ones can be onerous,
but is generally not complicated; however, the tedium
of this task can be alleviated by a small number of ge-
neric insights, which are easily expressed within our
hint infrastructure. Using these hints, we reduced the
size of some proofs by more than half, which great-
ly increased the readability and maintainability of the
proofs as the specifications evolved. Ultimately, the
proofs became fairly close to the proof outlines written
by experts because the automation was extended with
the expert's strategy for reasoning.
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A second instance where hints were able to abstract
low-level details arose when working with arrays, and
especially with array initialization and destruction. For
modularity purposes, BRiCk's semantics describes ar-
ray initialization compositionally by initializing each
array cell sequentially. Although this provides a clear
specification, using this approach becomes quite costly
when working with large arrays. Providing special hints
for default-initializing primitive arrays enabled us to
fuse many reasoning steps together, resulting in more
natural descriptions of the program state. Our hints
can also codify patterns for reasoning about array ac-
cesses in a natural way by decomposing (and recom-
posing) a large array into locations of interest and the
rest of the array. These sorts of “borrows” constitute
a large part of the administrative reasoning necessary
in low-level C++ programs, and our ability to express
these borrowing patterns generically generally means
that the automation can churn through array reason-
ing with relatively little manual intervention.

Industrial Programming Languages

One of the largest sources of complexity in verification
is not the code we write but the language in which we
write it. C++, and modern programming languages
in general, are both large and complex and provide
formal reasoning challenges in and of themselves. Al-
though necessary to address, we note that these chal-
lenges arise on a per-language rather than a per-pro-
gram basis, so most FM practitioners need not worry
about these issues. Further, BRiCk already addresses
these issues for the fragment of C++ that it supports.

Supporting Large Languages. The size of modern lan-
guages means that we must formalize them incremen-
tally. To facilitate this, BRiCk's semantics is directly ex-
pressed as a program logic, rather than as a derived
logic on top of an underlying operational semantics.
This approach allows us to leverage the built-in modu-
larity of separation logic to modularize our semantics.
It also makes it natural to underspecify the semantics
of particular language constructs, a property that is
essential early on and still useful when working with
multiple related languages, e.g., C++14 and C++17.

Although many language features can be desugared to
simpler primitives, we avoid this when possible. This
is partly for soundness as some transformations only
refine the high-level specification; however, there are
also reasons to support the sugar natively. Consider
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virtual functions in C++.

In theory, we could desugar these to tables of function
pointers, but doing so (even abstractly) would expose
reasoning principles not justified by the C++ standard.
Further, desugaring the construct would require all de-
velopers using the construct to reason about the de-
sugaring, something which is clearly undesirable. Sup-
porting the feature directly not only keeps us closer to
the standard but also enables us to build opinionated
abstractions and automation for the use cases of vir-
tual functions.

Supporting Sophisticated Language Features. Industri-
al languages also have features that are difficult to rea-
son about. The archetypical difficult language feature
in C++ is the object model, which is front and center
in C++ semantics. Keep in mind that the concurrent
memory model is another cross-cutting feature, albeit
one more limited in scope, because regular C++ vari-
able accesses must be data-race free. Although devel-
opers often think of C++ pointers as virtual addresses,
the C++ language puts significantly more structure on
them. This additional structure gives optimizers the
ability to reason more aggressively about programs
but comes at the cost of more bookkeeping in formal
proofs. For example, our semantics tracks pointer
provenance to rule out undefined behavior that arises
from low-level pointer manipulation.

Although not pervasive, the interoperation between
C++ and assembly is another necessary part of low-lev-
el programming. Beyond just giving a semantics for
assembly, we are forced to answer questions such as,
“What is the effect of sharing memory between multi-
ple programs?” Empirically, we know what compilers
do, but the standard text is silent on many of these
low-level questions.

To avoid these issues in the short term, we make ju-
dicious, simplifying assumptions that seem to hold
in practice. For example, BRiCk assumes that deallo-
cating memory does not invalidate the pointer, an as-
sumption not sanctioned by the standard. This choice
requires that we add liveness side conditions to cer-
tain operations to avoid obvious unsoundnesses. Re-
searchers suggest'? that this seems necessary (in C) to
support common, low-level programming idioms and
is therefore likely justified by compilers in practice.
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MANAGING FM TEAMS

In the past few years at BedRock Systems, we have ex-
perimented with a few different approaches for man-
aging FM work. In this section, we discuss some of the
lessons that we learned. We underscore that the val-
ue of FM is directly correlated with its pervasiveness.
When FM are involved early and regularly throughout
development, things tend to go smoothly. Delaying FM
involvement until the end makes them more difficult
to accurately plan and ultimately prove the code cor-
rect.

At a high level, our experience suggests that managing
FM teams is not fundamentally different from man-
aging “normal” development teams. At a lower level,
we found that focused efforts exercising specifica-
tions from both the client and implementation sides
are highly effective at delivering high-quality, reusable,
and verified code. We refer to this approach as spike-
based verification because it is built around focused
verticals.

In the next section, we focus on our spike-based verifi-
cation efforts on the UMX, a multithreaded service that
implements a console multiplexer.

The UMX Spike

The UMX spike was planned from the top down, from a
top-level specification to the implementation, but gen-
erally completed from the bottom up, from application
dependencies to the top-level specification. During the
initial planning, we identified two high-level compo-
nents: the control plane, which interacts with clients,
and data plane, which forwards data.

Rather than splitting the team equally between these
components, we opted to focus first on the data plane
and then the control plane. Consolidating resources
improved collaboration and resulted in timely and
constructive feedback. For example, the team was able
to identify a key missing abstraction around string lit-
erals early on and developed preliminary automation
for them that was immediately used by the rest of the
team.

It is useful to note that the separation of clients and
implementation via a formal specification generally
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enables a greater degree of parallelism than is possi-
ble in traditional software engineering. Client verifica-
tion can start even before an implementation exists
and certainly before a proof is completed. We find that
our goal of automatable abstractions tends to insulate
client code from shallow, specification-level changes,
allowing them to (relatively quickly) adapt proofs when
underlying interfaces change.

The control plane verification did not proceed as
smoothly as the data plane verification due to unfore-
seen complexities in two components: the service li-
brary and use of shared memory. The underlying issue
in both of these stemmed from subtle complexities
and insufficient expert bandwidth. This is especially
problematic at external interfaces, where the behavior
of clients is largely unconstrained and therefore some-
times difficult to conceptualize. In these circumstanc-
es hav-ing experts on hand is essential, and even with
them, it is sometimes challenging to estimate the diffi-
culty of a task before you are already deep in it.

Although experiences like these do arise, they occur
less frequently than one might think. Bleeding edge
work often comes with risks and slowdowns, but in
many cases, this is not fundamentally different than
state-of-the-art software engineering. As in that con-
text, it is crucial to avoid early overgeneralization and
scope creep. We have found that the combination of
spike-based verification and agile-style sprints helps
with this. Rather than solving problems in a vacuum,
engineers focus on real use cases attached to real
code. With a specific use case in mind, a solution can
often take the place of the “perfect” solution and en-
able for-ward progress (see Figure 2). New use cases
(and fresh eyes) often inspire new insights that can be
used to generalize existing specifications. In practice,
the proof burden introduced by generalizing an inter-
face is often significantly reduced by “adapter” hints
provided to our extensible automation.

The scrum approach to FM is highly effective at trans-
ferring skills among developers. Short, daily sync meet-
ings helped to connect more and less experienced de-
velopers. The focused scope of the group also greatly
reduced the context switching overhead in collabora-
tion and resulted in both faster and better feedback
across the board.
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Hiring and Training for FM

Spike-based formal verification improves onboarding, but hiring for FM is still difficult. There are few candidates
with general FM expertise and even fewer with expertise in specialized areas such as concurrent separation logic.
The universities teaching FM to undergraduates help mitigate the gap, but we have found that teaching FM “on the
job" is necessary. Even Ph.D.s with deep experience in separation logic require training to transition from academic
FM (which often focus on smaller programs and meta-level issues) to industrial program verification. Over time,
this transition period at BedRock Systems has shortened, and we believe that good training material and exposure
through spike-based verification will further reduce the overhead.

When hiring general software engineers, we have found that candidates with functional programming background
are able to pick up FM much more readily than those without such exposure. In part, this is attributable to the
fact that Coq is built around a functional programming language (Gallina), but we believe that it is more than that.
Functional programming languages tend to focus on minimalism, which seems to train developers to more quickly
separate the core problem from the noise surrounding it. This skill is transferable not only to specification writing

but also to the design of good interfaces.
Client 2

Figure 2. The lifecycle of a
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specification (spec). We veri-
fy code in spikes that address
both users and implementers
of specified code, iteratively
refining specs until they are
both realizable and useful. Lat-
er clients benefit from usabili-
ty improvements that occur in
previous verification cycles.

Incorporating FM into all aspects of the software de-
velopment lifecycle, from software system design to
implementation to code maintenance, has the poten-
tial to revolutionize the software industry. But making
pervasive FM a reality requires solving deep technical
and nontechnical challenges, many of which we have
begun to address at BedRock Systems.

On the technical side, we see refining language stan-
dards and improving automation as crucial barriers
that are beginning to fall. Reasoning about industrial
languages such as C++ is necessary but raises difficult
problems in semantics, especially around complicated
corners of standards. This is an active area of research,
and increasingly, standards committees (especially the
C standard committee) are seeing the value in it. Engi-
neering verification to scale to complex industrial code
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bases means building automatable, but also highly
expressive, program logics. BedRock System’s auto-
mation for C++ supports a hybrid of highly automat-
ed reasoning when possible and deliberate reasoning
when necessary. The need for both is essential as pro-
grams grow not only in size but also complexity.

On the nontechnical side, it is crucial to expand profi-
ciency in FM across the board. Specialized FM experts
will still be necessary, but we believe that much of the
knowledge required for verification could be made
accessible to undergraduates. Mainstream interest
in Rust and the growing popularity of functional pro-
gramming languages both suggest that attitudes to-
ward new technologies are changing in a positive way
for FM. In the meantime, on-the-job training can com-
pensate for a lack of general knowledge.
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